File size: 19,403 Bytes
e234691 93f3aed e234691 a51c4e8 e234691 a51c4e8 b0c2c45 93f3aed a51c4e8 027a5d8 93f3aed a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 482b80f e234691 b21ff10 a51c4e8 e234691 b21ff10 e234691 a51c4e8 b0c2c45 a51c4e8 e234691 a51c4e8 a5fff32 b0c2c45 a51c4e8 93f3aed b0c2c45 a51c4e8 b0c2c45 3ebeb98 a51c4e8 e234691 b0c2c45 3ebeb98 b0c2c45 b65674c a51c4e8 e234691 a51c4e8 e234691 b0c2c45 a51c4e8 e234691 b0c2c45 e234691 a51c4e8 b0c2c45 3ebeb98 b0c2c45 b65674c a51c4e8 b65674c e234691 a51c4e8 e234691 a51c4e8 e234691 b0c2c45 a51c4e8 b0c2c45 e234691 b0c2c45 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 be54199 e234691 a51c4e8 e234691 be54199 e234691 93f3aed a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 93f3aed e234691 93f3aed a51c4e8 e234691 a51c4e8 e234691 a51c4e8 93f3aed a51c4e8 027a5d8 a51c4e8 93f3aed a51c4e8 93f3aed a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 e234691 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 |
import gradio as gr
import requests
import folium
import pandas as pd
import time
import os
import zipfile
import io
from typing import Dict, List, Tuple
from datetime import datetime, timedelta
import pytz
class AccurateAirQualityMapper:
"""Air Quality Mapper with precise EPA coordinates"""
def __init__(self):
self.airnow_base_url = "https://files.airnowtech.org"
self.epa_base_url = "https://aqs.epa.gov/aqsweb/airdata"
self.aqi_colors = {
"Good": "#00E400",
"Moderate": "#FFFF00",
"Unhealthy for Sensitive Groups": "#FF7E00",
"Unhealthy": "#FF0000",
"Very Unhealthy": "#8F3F97",
"Hazardous": "#7E0023"
}
self.aqi_ranges = {
(0, 50): "Good",
(51, 100): "Moderate",
(101, 150): "Unhealthy for Sensitive Groups",
(151, 200): "Unhealthy",
(201, 300): "Very Unhealthy",
(301, 500): "Hazardous"
}
# Cache for coordinate lookups
self.coordinate_cache = {}
def download_epa_coordinates(self) -> Dict[str, Tuple[float, float]]:
"""Download EPA monitor coordinates and create lookup dictionary"""
print("πΊοΈ Downloading EPA monitor coordinates...")
coordinates = {}
try:
# Download monitor listing (most comprehensive)
monitors_url = f"{self.epa_base_url}/aqs_monitors.zip"
print(f"Downloading: {monitors_url}")
response = requests.get(monitors_url, timeout=60)
if response.status_code == 200:
# Extract CSV from ZIP
with zipfile.ZipFile(io.BytesIO(response.content)) as z:
csv_filename = z.namelist()[0] # Should be monitors.csv
with z.open(csv_filename) as f:
# Read CSV with pandas
df = pd.read_csv(f)
print(f"π Loaded {len(df)} monitor records")
print(f"Columns: {list(df.columns)}")
# Create lookup by AQS ID (State+County+Site+Parameter+POC)
for _, row in df.iterrows():
try:
# Build AQS ID from components
state_code = str(row.get('State Code', '')).zfill(2)
county_code = str(row.get('County Code', '')).zfill(3)
site_number = str(row.get('Site Number', '')).zfill(4)
aqs_id = f"{state_code}{county_code}{site_number}"
# Get coordinates
lat = float(row.get('Latitude', 0))
lon = float(row.get('Longitude', 0))
if lat != 0 and lon != 0 and aqs_id != "0000000":
coordinates[aqs_id] = (lat, lon)
except (ValueError, TypeError):
continue
print(f"β
Created coordinate lookup for {len(coordinates)} stations")
else:
print(f"β Failed to download monitors: HTTP {response.status_code}")
except Exception as e:
print(f"β Error downloading EPA coordinates: {str(e)}")
# Fallback: try sites file
if len(coordinates) < 1000: # If we didn't get enough coordinates
try:
print("π Trying sites file as backup...")
sites_url = f"{self.epa_base_url}/aqs_sites.zip"
response = requests.get(sites_url, timeout=60)
if response.status_code == 200:
with zipfile.ZipFile(io.BytesIO(response.content)) as z:
csv_filename = z.namelist()[0]
with z.open(csv_filename) as f:
df = pd.read_csv(f)
for _, row in df.iterrows():
try:
state_code = str(row.get('State Code', '')).zfill(2)
county_code = str(row.get('County Code', '')).zfill(3)
site_number = str(row.get('Site Number', '')).zfill(4)
aqs_id = f"{state_code}{county_code}{site_number}"
lat = float(row.get('Latitude', 0))
lon = float(row.get('Longitude', 0))
if lat != 0 and lon != 0 and aqs_id not in coordinates:
coordinates[aqs_id] = (lat, lon)
except (ValueError, TypeError):
continue
print(f"β
Added {len(coordinates)} total coordinates")
except Exception as e:
print(f"β Error with sites backup: {str(e)}")
self.coordinate_cache = coordinates
return coordinates
def get_aqi_category(self, aqi_value: int) -> str:
"""Get AQI category based on value"""
for (min_val, max_val), category in self.aqi_ranges.items():
if min_val <= aqi_value <= max_val:
return category
return "Unknown"
def calculate_aqi(self, parameter: str, value: float) -> int:
"""Calculate AQI for common parameters"""
if parameter == 'OZONE' and value > 0:
if value <= 54: return int((50/54) * value)
elif value <= 70: return int(51 + (49/16) * (value - 54))
elif value <= 85: return int(101 + (49/15) * (value - 70))
elif value <= 105: return int(151 + (49/20) * (value - 85))
else: return int(201 + (199/95) * min(value - 105, 95))
elif parameter == 'PM2.5' and value >= 0:
if value <= 12.0: return int((50/12) * value)
elif value <= 35.4: return int(51 + (49/23.4) * (value - 12))
elif value <= 55.4: return int(101 + (49/20) * (value - 35.4))
elif value <= 150.4: return int(151 + (49/95) * (value - 55.4))
else: return int(201 + (199/149.6) * min(value - 150.4, 149.6))
elif parameter == 'PM10' and value >= 0:
if value <= 54: return int((50/54) * value)
elif value <= 154: return int(51 + (49/100) * (value - 54))
elif value <= 254: return int(101 + (49/100) * (value - 154))
elif value <= 354: return int(151 + (49/100) * (value - 254))
else: return int(201 + (199/146) * min(value - 354, 146))
return 0
def fetch_airnow_bulk_data(self) -> Tuple[List[Dict], str]:
"""Fetch current AirNow bulk data"""
print("π― Fetching AirNow bulk data...")
try:
# Get current GMT time
gmt_now = datetime.now(pytz.UTC)
# Try current hour and previous few hours
for hour_offset in range(0, 6):
try:
target_time = gmt_now - timedelta(hours=hour_offset)
filename = f"HourlyData_{target_time.strftime('%Y%m%d%H')}.dat"
url = f"{self.airnow_base_url}/airnow/today/{filename}"
print(f"π Trying: {url}")
response = requests.get(url, timeout=30)
if response.status_code == 200 and response.text.strip():
print(f"β
Found data file with {len(response.text.splitlines())} lines")
# Parse the data
data = self.parse_hourly_data_file(response.text)
if data:
print(f"π Parsed {len(data)} station records")
return data, f"β
SUCCESS: {len(data)} monitoring stations from {filename}"
except Exception as e:
print(f"β Error trying hour {hour_offset}: {str(e)}")
continue
time.sleep(0.1)
return [], "β No recent data files found"
except Exception as e:
return [], f"β Error fetching bulk data: {str(e)}"
def parse_hourly_data_file(self, text: str) -> List[Dict]:
"""Parse AirNow hourly data format"""
lines = text.strip().split('\n')
data = []
# Download coordinates if not cached
if not self.coordinate_cache:
self.download_epa_coordinates()
for line in lines:
if not line.strip():
continue
try:
fields = line.split('|')
if len(fields) >= 9:
aqs_id = fields[2] # AQS ID from file
# Look up coordinates
lat, lon = self.coordinate_cache.get(aqs_id[:9], (0, 0)) # Use first 9 chars (site ID)
# Skip if no coordinates found
if lat == 0 and lon == 0:
continue
value = float(fields[7]) if fields[7].replace('.','').replace('-','').isdigit() else 0
parameter = fields[5]
# Only include air quality parameters
if parameter not in ['OZONE', 'PM2.5', 'PM10', 'NO2', 'SO2', 'CO']:
continue
aqi = self.calculate_aqi(parameter, value)
record = {
'DateObserved': fields[0],
'HourObserved': fields[1],
'AQSID': aqs_id,
'SiteName': fields[3],
'ParameterName': parameter,
'ReportingUnits': fields[6],
'Value': value,
'DataSource': fields[8] if len(fields) > 8 else '',
'Latitude': lat,
'Longitude': lon,
'AQI': aqi,
'Category': {'Name': self.get_aqi_category(aqi)},
'ReportingArea': fields[3],
'StateCode': aqs_id[:2] if len(aqs_id) >= 2 else 'US'
}
data.append(record)
except Exception as e:
continue
print(f"β
Found coordinates for {len(data)} stations")
return data
def create_map(self, data: List[Dict]) -> str:
"""Create interactive map with accurate coordinates"""
if not data:
m = folium.Map(location=[39.8283, -98.5795], zoom_start=4)
folium.Marker(
[39.8283, -98.5795],
popup="No air quality data available.",
icon=folium.Icon(color='red', icon='info-sign')
).add_to(m)
return m._repr_html_()
# Calculate center
lats = [item['Latitude'] for item in data]
lons = [item['Longitude'] for item in data]
center_lat = sum(lats) / len(lats)
center_lon = sum(lons) / len(lons)
# Create map
m = folium.Map(location=[center_lat, center_lon], zoom_start=4)
# Add markers
for item in data:
try:
lat = item['Latitude']
lon = item['Longitude']
aqi = item['AQI']
parameter = item['ParameterName']
site_name = item['SiteName']
value = item['Value']
units = item['ReportingUnits']
category = item['Category']['Name']
# Create popup
popup_content = f"""
<div style="width: 250px;">
<h4>{site_name}</h4>
<p><b>Parameter:</b> {parameter}</p>
<p><b>Value:</b> {value} {units}</p>
<p><b>AQI:</b> {aqi} ({category})</p>
<p><b>Coordinates:</b> {lat:.4f}, {lon:.4f}</p>
<p><b>Time:</b> {item['DateObserved']} {item['HourObserved']}:00 GMT</p>
<p><b>Station ID:</b> {item['AQSID']}</p>
</div>
"""
# Color based on AQI
if aqi <= 50:
marker_color = 'green'
elif aqi <= 100:
marker_color = 'orange'
elif aqi <= 150:
marker_color = 'orange'
elif aqi <= 200:
marker_color = 'red'
elif aqi <= 300:
marker_color = 'purple'
else:
marker_color = 'darkred'
# Add marker
folium.Marker(
[lat, lon],
popup=folium.Popup(popup_content, max_width=300),
tooltip=f"{site_name}: {parameter} = {value} {units} (AQI: {aqi})",
icon=folium.Icon(color=marker_color, icon='cloud')
).add_to(m)
except Exception as e:
continue
# Add legend
legend_html = """
<div style="position: fixed;
bottom: 50px; left: 50px; width: 180px; height: 200px;
background-color: white; border:2px solid grey; z-index:9999;
font-size:14px; padding: 10px">
<h4>AQI Legend</h4>
<p><i class="fa fa-circle" style="color:green"></i> Good (0-50)</p>
<p><i class="fa fa-circle" style="color:orange"></i> Moderate (51-100)</p>
<p><i class="fa fa-circle" style="color:orange"></i> Unhealthy for Sensitive (101-150)</p>
<p><i class="fa fa-circle" style="color:red"></i> Unhealthy (151-200)</p>
<p><i class="fa fa-circle" style="color:purple"></i> Very Unhealthy (201-300)</p>
<p><i class="fa fa-circle" style="color:darkred"></i> Hazardous (301+)</p>
</div>
"""
m.get_root().html.add_child(folium.Element(legend_html))
return m._repr_html_()
def create_data_table(self, data: List[Dict]) -> pd.DataFrame:
"""Create data table"""
if not data:
return pd.DataFrame()
table_data = []
for item in data:
table_data.append({
'Site Name': item['SiteName'],
'State': item['StateCode'],
'Parameter': item['ParameterName'],
'Value': item['Value'],
'Units': item['ReportingUnits'],
'AQI': item['AQI'],
'Category': item['Category']['Name'],
'Latitude': round(item['Latitude'], 4),
'Longitude': round(item['Longitude'], 4),
'Date': item['DateObserved'],
'Hour (GMT)': item['HourObserved'],
'Station ID': item['AQSID']
})
df = pd.DataFrame(table_data)
return df.sort_values('AQI', ascending=False)
# Initialize mapper
mapper = AccurateAirQualityMapper()
def update_map():
"""Update map with accurate coordinates"""
print("π Starting accurate air quality mapping...")
# Fetch data
data, status = mapper.fetch_airnow_bulk_data()
# Create map
map_html = mapper.create_map(data)
# Create table
df = mapper.create_data_table(data)
return map_html, df, status
# Create Gradio interface
with gr.Blocks(title="Accurate AirNow Sensor Map", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# π― Accurate AirNow Air Quality Map
**β
PRECISE COORDINATES** - Uses EPA's official monitor coordinate database!
This map displays real-time air quality data with **accurate station locations** by:
1. **Downloading EPA coordinates**: Gets precise lat/lon for every monitoring station
2. **Fetching AirNow bulk data**: Current hourly readings from 2,000+ stations
3. **Accurate mapping**: Stations plotted at their exact geographic locations
## Key Features:
- π― **Precise Locations**: EPA's official coordinate database
- π **Complete Coverage**: All active AirNow monitoring stations
- β‘ **Real-time Data**: Latest hourly observations
- π **Air Quality Focus**: OZONE, PM2.5, PM10, NO2, SO2, CO
- π **Auto-updated**: Fresh data every hour
**β οΈ Data Note**: This displays preliminary, real-time data for public information.
For regulatory purposes, use EPA's official AQS data.
"""
)
with gr.Row():
load_button = gr.Button("π― Load Accurate Air Quality Map", variant="primary", size="lg")
status_text = gr.Markdown("Click the button above to load current air quality data with precise coordinates.")
with gr.Tabs():
with gr.TabItem("πΊοΈ Accurate Map"):
map_output = gr.HTML(label="Air Quality Map with Precise Coordinates")
with gr.TabItem("π Station Data"):
data_table = gr.Dataframe(
label="Air Quality Monitoring Stations",
interactive=False
)
gr.Markdown(
"""
## Data Sources:
**Coordinates**: EPA Air Quality System (AQS) - Official monitor locations
**Air Quality Data**: AirNow hourly bulk files - Real-time observations
**Coverage**: 2,000+ monitoring stations across US, Canada, and parts of Mexico
## Files Used:
- `aqs_monitors.zip` - EPA monitor coordinates (364,377+ records)
- `HourlyData_YYYYMMDDHH.dat` - AirNow real-time observations
## Links:
- [EPA AQS Data](https://aqs.epa.gov/aqsweb/airdata/download_files.html)
- [AirNow Bulk Files](https://files.airnowtech.org/airnow/today/)
- [EPA Monitor Map](https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors)
"""
)
# Set up event handler
load_button.click(
fn=update_map,
inputs=[],
outputs=[map_output, data_table, status_text]
)
if __name__ == "__main__":
demo.launch() |