File size: 32,429 Bytes
e234691
93f3aed
e234691
a51c4e8
e234691
 
a51c4e8
 
 
b0c2c45
 
93f3aed
a51c4e8
 
027a5d8
93f3aed
a51c4e8
 
e234691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a51c4e8
 
5569c77
a51c4e8
5569c77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a51c4e8
 
 
 
 
 
e234691
5569c77
a51c4e8
 
 
 
 
5569c77
 
a51c4e8
 
5569c77
 
 
 
a51c4e8
5569c77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a51c4e8
 
 
 
 
 
 
 
 
5569c77
 
 
a51c4e8
5569c77
a51c4e8
 
5569c77
a51c4e8
 
5569c77
 
 
 
 
 
 
 
 
 
 
 
a51c4e8
5569c77
 
 
 
 
 
 
 
 
 
 
 
 
 
a51c4e8
5569c77
a51c4e8
 
 
e234691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a51c4e8
e234691
 
a51c4e8
 
482b80f
e234691
 
 
 
 
5569c77
e234691
 
 
b21ff10
a51c4e8
e234691
b21ff10
e234691
 
 
a51c4e8
5569c77
 
 
 
b0c2c45
a51c4e8
 
 
 
 
 
e234691
 
 
 
 
 
 
5569c77
 
 
 
a5fff32
b0c2c45
5569c77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
93f3aed
b0c2c45
a51c4e8
b0c2c45
3ebeb98
 
a51c4e8
 
 
 
5569c77
 
 
 
 
b0c2c45
 
 
3ebeb98
b0c2c45
b65674c
5569c77
 
a51c4e8
5569c77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a51c4e8
 
 
 
e234691
5569c77
a51c4e8
5569c77
 
 
 
 
 
 
 
 
a51c4e8
5569c77
a51c4e8
e234691
5569c77
6268d66
 
 
b0c2c45
5569c77
 
a51c4e8
5569c77
a51c4e8
5569c77
e234691
b0c2c45
e234691
 
 
6268d66
5569c77
6268d66
 
b0c2c45
3ebeb98
b0c2c45
 
5569c77
 
 
 
b0c2c45
5569c77
 
b0c2c45
b65674c
5569c77
b65674c
 
e234691
a51c4e8
e234691
 
 
 
a51c4e8
e234691
 
 
b0c2c45
a51c4e8
 
 
 
 
b0c2c45
5569c77
 
e234691
 
b0c2c45
a51c4e8
5569c77
e234691
 
a51c4e8
 
 
 
 
 
 
 
5569c77
e234691
6268d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e234691
5569c77
6268d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e234691
5569c77
6268d66
 
e234691
 
 
 
 
6268d66
 
e234691
 
5569c77
 
e234691
5569c77
a51c4e8
e234691
5569c77
 
e234691
 
 
6268d66
e234691
6268d66
 
 
e234691
 
 
 
 
 
6268d66
 
e234691
 
 
 
 
 
 
a51c4e8
e234691
 
be54199
e234691
 
6268d66
e234691
a51c4e8
 
 
6268d66
a51c4e8
 
6268d66
a51c4e8
 
 
 
 
 
e234691
be54199
e234691
55126fb
 
 
 
 
 
 
 
 
93f3aed
a51c4e8
 
e234691
 
a51c4e8
6268d66
e234691
a51c4e8
e234691
93f3aed
6268d66
5569c77
6268d66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e234691
 
93f3aed
a51c4e8
e234691
 
 
 
 
a51c4e8
e234691
 
a51c4e8
5569c77
93f3aed
5569c77
027a5d8
5569c77
 
 
 
 
 
93f3aed
5569c77
 
 
 
 
 
e234691
 
 
 
5569c77
e234691
5569c77
e234691
 
6268d66
5569c77
e234691
6268d66
e234691
6268d66
e234691
 
 
 
 
5569c77
e234691
5569c77
 
 
 
 
6268d66
5569c77
 
 
 
e234691
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
import gradio as gr
import requests
import folium
import pandas as pd
import time
import os
import zipfile
import io
from typing import Dict, List, Tuple
from datetime import datetime, timedelta
import pytz

class AccurateAirQualityMapper:
    """Air Quality Mapper with precise EPA coordinates"""
    
    def __init__(self):
        self.airnow_base_url = "https://files.airnowtech.org"
        self.epa_base_url = "https://aqs.epa.gov/aqsweb/airdata"
        self.aqi_colors = {
            "Good": "#00E400",
            "Moderate": "#FFFF00", 
            "Unhealthy for Sensitive Groups": "#FF7E00",
            "Unhealthy": "#FF0000",
            "Very Unhealthy": "#8F3F97",
            "Hazardous": "#7E0023"
        }
        self.aqi_ranges = {
            (0, 50): "Good",
            (51, 100): "Moderate", 
            (101, 150): "Unhealthy for Sensitive Groups",
            (151, 200): "Unhealthy",
            (201, 300): "Very Unhealthy",
            (301, 500): "Hazardous"
        }
        # Cache for coordinate lookups
        self.coordinate_cache = {}
        self.fallback_coordinates = self.get_fallback_coordinates()
        
    def get_fallback_coordinates(self) -> Dict[str, Tuple[float, float]]:
        """Fallback coordinates for major monitoring locations"""
        return {
            # Major cities with known monitoring stations
            "Los Angeles": (34.0522, -118.2437),
            "New York": (40.7128, -74.0060),
            "Chicago": (41.8781, -87.6298),
            "Houston": (29.7604, -95.3698),
            "Phoenix": (33.4484, -112.0740),
            "Philadelphia": (39.9526, -75.1652),
            "San Antonio": (29.4241, -98.4936),
            "San Diego": (32.7157, -117.1611),
            "Dallas": (32.7767, -96.7970),
            "San Francisco": (37.7749, -122.4194),
            "Boston": (42.3601, -71.0589),
            "Seattle": (47.6062, -122.3321),
            "Denver": (39.7392, -104.9903),
            "Atlanta": (33.7490, -84.3880),
            "Miami": (25.7617, -80.1918)
        }
    
    def download_epa_coordinates(self) -> Dict[str, Tuple[float, float]]:
        """Download EPA monitor coordinates and create lookup dictionary"""
        
        print("πŸ—ΊοΈ Downloading EPA monitor coordinates...")
        coordinates = {}
        
        try:
            # Try the monitors file first
            monitors_url = f"{self.epa_base_url}/aqs_monitors.zip"
            print(f"Downloading: {monitors_url}")
            
            response = requests.get(monitors_url, timeout=60)
            if response.status_code == 200:
                print(f"βœ… Downloaded monitors file ({len(response.content)} bytes)")
                
                # Extract CSV from ZIP
                with zipfile.ZipFile(io.BytesIO(response.content)) as z:
                    csv_files = [f for f in z.namelist() if f.endswith('.csv')]
                    if csv_files:
                        csv_filename = csv_files[0]
                        print(f"πŸ“‚ Extracting: {csv_filename}")
                        
                        with z.open(csv_filename) as f:
                            # Read CSV with pandas
                            df = pd.read_csv(f, dtype=str)  # Read as strings first
                            
                            print(f"πŸ“Š Loaded {len(df)} monitor records")
                            print(f"Columns: {list(df.columns)}")
                            
                            # Show sample data
                            if len(df) > 0:
                                print("Sample row:")
                                print(df.iloc[0].to_dict())
                            
                            # Create lookup by various ID formats
                            for _, row in df.iterrows():
                                try:
                                    # Try different column name variations
                                    state_code = None
                                    county_code = None
                                    site_number = None
                                    lat = None
                                    lon = None
                                    
                                    # Find state code
                                    for col in ['State Code', 'State_Code', 'state_code', 'STATE_CODE']:
                                        if col in df.columns and pd.notna(row.get(col)):
                                            state_code = str(row[col]).zfill(2)
                                            break
                                    
                                    # Find county code
                                    for col in ['County Code', 'County_Code', 'county_code', 'COUNTY_CODE']:
                                        if col in df.columns and pd.notna(row.get(col)):
                                            county_code = str(row[col]).zfill(3)
                                            break
                                    
                                    # Find site number
                                    for col in ['Site Number', 'Site_Number', 'site_number', 'SITE_NUMBER']:
                                        if col in df.columns and pd.notna(row.get(col)):
                                            site_number = str(row[col]).zfill(4)
                                            break
                                    
                                    # Find latitude
                                    for col in ['Latitude', 'latitude', 'LATITUDE', 'Lat']:
                                        if col in df.columns and pd.notna(row.get(col)):
                                            lat = float(row[col])
                                            break
                                    
                                    # Find longitude
                                    for col in ['Longitude', 'longitude', 'LONGITUDE', 'Lon']:
                                        if col in df.columns and pd.notna(row.get(col)):
                                            lon = float(row[col])
                                            break
                                    
                                    # Create AQS ID if we have the components
                                    if all([state_code, county_code, site_number, lat, lon]):
                                        if lat != 0 and lon != 0:
                                            aqs_id = f"{state_code}{county_code}{site_number}"
                                            coordinates[aqs_id] = (lat, lon)
                                            
                                            # Also store partial IDs for matching
                                            site_id = f"{state_code}{county_code}{site_number}"
                                            coordinates[site_id[:9]] = (lat, lon)  # First 9 chars
                                            coordinates[site_id[:7]] = (lat, lon)  # State+County+Site
                                    
                                except (ValueError, TypeError) as e:
                                    continue
                                    
                print(f"βœ… Created coordinate lookup for {len(coordinates)} stations")
                
            else:
                print(f"❌ Failed to download monitors: HTTP {response.status_code}")
                
        except Exception as e:
            print(f"❌ Error downloading EPA coordinates: {str(e)}")
        
        # If we don't have many coordinates, try a simpler approach
        if len(coordinates) < 100:
            print("πŸ”„ Trying alternative coordinate source...")
            try:
                # Try sites file as backup
                sites_url = f"{self.epa_base_url}/aqs_sites.zip"
                response = requests.get(sites_url, timeout=60)
                
                if response.status_code == 200:
                    with zipfile.ZipFile(io.BytesIO(response.content)) as z:
                        csv_files = [f for f in z.namelist() if f.endswith('.csv')]
                        if csv_files:
                            with z.open(csv_files[0]) as f:
                                df = pd.read_csv(f, dtype=str)
                                print(f"πŸ“Š Backup file has {len(df)} records")
                                
                                for _, row in df.iterrows():
                                    try:
                                        # Similar logic for backup file
                                        state_code = str(row.get('State Code', row.get('STATE_CODE', ''))).zfill(2)
                                        county_code = str(row.get('County Code', row.get('COUNTY_CODE', ''))).zfill(3)
                                        site_number = str(row.get('Site Number', row.get('SITE_NUMBER', ''))).zfill(4)
                                        
                                        lat = float(row.get('Latitude', row.get('LATITUDE', 0)))
                                        lon = float(row.get('Longitude', row.get('LONGITUDE', 0)))
                                        
                                        if all([state_code != "00", county_code != "000", site_number != "0000"]) and lat != 0 and lon != 0:
                                            aqs_id = f"{state_code}{county_code}{site_number}"
                                            coordinates[aqs_id] = (lat, lon)
                                            coordinates[aqs_id[:9]] = (lat, lon)
                                            coordinates[aqs_id[:7]] = (lat, lon)
                                            
                                    except (ValueError, TypeError):
                                        continue
                                        
                print(f"βœ… Total coordinates after backup: {len(coordinates)}")
                
            except Exception as e:
                print(f"❌ Error with backup coordinates: {str(e)}")
        
        self.coordinate_cache = coordinates
        return coordinates
    
    def get_aqi_category(self, aqi_value: int) -> str:
        """Get AQI category based on value"""
        for (min_val, max_val), category in self.aqi_ranges.items():
            if min_val <= aqi_value <= max_val:
                return category
        return "Unknown"
    
    def calculate_aqi(self, parameter: str, value: float) -> int:
        """Calculate AQI for common parameters"""
        if parameter == 'OZONE' and value > 0:
            if value <= 54: return int((50/54) * value)
            elif value <= 70: return int(51 + (49/16) * (value - 54))
            elif value <= 85: return int(101 + (49/15) * (value - 70))
            elif value <= 105: return int(151 + (49/20) * (value - 85))
            else: return int(201 + (199/95) * min(value - 105, 95))
            
        elif parameter == 'PM2.5' and value >= 0:
            if value <= 12.0: return int((50/12) * value)
            elif value <= 35.4: return int(51 + (49/23.4) * (value - 12))
            elif value <= 55.4: return int(101 + (49/20) * (value - 35.4))
            elif value <= 150.4: return int(151 + (49/95) * (value - 55.4))
            else: return int(201 + (199/149.6) * min(value - 150.4, 149.6))
            
        elif parameter == 'PM10' and value >= 0:
            if value <= 54: return int((50/54) * value)
            elif value <= 154: return int(51 + (49/100) * (value - 54))
            elif value <= 254: return int(101 + (49/100) * (value - 154))
            elif value <= 354: return int(151 + (49/100) * (value - 254))
            else: return int(201 + (199/146) * min(value - 354, 146))
            
        return 0
    
    def fetch_airnow_bulk_data(self) -> Tuple[List[Dict], str]:
        """Fetch current AirNow bulk data"""
        print("🎯 Fetching AirNow bulk data...")
        
        try:
            # Get current GMT time
            gmt_now = datetime.now(pytz.UTC)
            
            # Try current hour and previous few hours
            for hour_offset in range(0, 12):  # Try more hours
                try:
                    target_time = gmt_now - timedelta(hours=hour_offset)
                    filename = f"HourlyData_{target_time.strftime('%Y%m%d%H')}.dat"
                    
                    url = f"{self.airnow_base_url}/airnow/today/{filename}"
                    print(f"πŸ” Trying: {url}")
                    
                    response = requests.get(url, timeout=30)
                    
                    if response.status_code == 200 and response.text.strip():
                        print(f"βœ… Found data file with {len(response.text.splitlines())} lines")
                        print(f"First few lines:")
                        lines = response.text.strip().split('\n')
                        for i, line in enumerate(lines[:3]):
                            print(f"  Line {i+1}: {line}")
                        
                        # Parse the data
                        data = self.parse_hourly_data_file(response.text)
                        
                        if data:
                            print(f"πŸ“Š Parsed {len(data)} station records")
                            return data, f"βœ… SUCCESS: {len(data)} monitoring stations from {filename}"
                        
                except Exception as e:
                    print(f"❌ Error trying hour {hour_offset}: {str(e)}")
                    continue
                    
                time.sleep(0.1)
            
            # If no data found, create some demo data
            print("πŸ”„ No recent data found, creating demo data...")
            demo_data = self.create_demo_data()
            return demo_data, f"⚠️ DEMO: {len(demo_data)} demo stations (no recent AirNow data available)"
            
        except Exception as e:
            # Fallback to demo data
            demo_data = self.create_demo_data()
            return demo_data, f"❌ Error fetching data, showing demo: {str(e)}"
    
    def create_demo_data(self) -> List[Dict]:
        """Create demo data with known coordinates"""
        demo_data = []
        
        for city, (lat, lon) in self.fallback_coordinates.items():
            # Add an air quality station
            demo_data.append({
                'DateObserved': datetime.now().strftime('%m/%d/%y'),
                'HourObserved': str(datetime.now().hour).zfill(2),
                'AQSID': f"DEMO_{city}_AQ",
                'SiteName': f"{city} Air Quality Monitor",
                'ParameterName': 'PM2.5',
                'ReportingUnits': 'UG/M3',
                'Value': 15.0 + (hash(city) % 20),  # Vary by city
                'DataSource': 'DEMO',
                'Latitude': lat,
                'Longitude': lon,
                'AQI': 50 + (hash(city) % 50),
                'Category': {'Name': 'Moderate'},
                'ReportingArea': city,
                'StateCode': 'US',
                'IsAirQuality': True
            })
            
            # Add a meteorological station
            demo_data.append({
                'DateObserved': datetime.now().strftime('%m/%d/%y'),
                'HourObserved': str(datetime.now().hour).zfill(2),
                'AQSID': f"DEMO_{city}_MET",
                'SiteName': f"{city} Weather Station",
                'ParameterName': 'TEMP',
                'ReportingUnits': 'FAHRENHEIT',
                'Value': 70.0 + (hash(city) % 30),
                'DataSource': 'DEMO',
                'Latitude': lat + 0.01,  # Slightly offset
                'Longitude': lon + 0.01,
                'AQI': 0,
                'Category': {'Name': 'Meteorological'},
                'ReportingArea': city,
                'StateCode': 'US',
                'IsAirQuality': False
            })
        
        return demo_data
    
    def parse_hourly_data_file(self, text: str) -> List[Dict]:
        """Parse AirNow hourly data format"""
        lines = text.strip().split('\n')
        data = []
        
        # Download coordinates if not cached
        if not self.coordinate_cache:
            self.download_epa_coordinates()
        
        print(f"πŸ” Parsing {len(lines)} lines with {len(self.coordinate_cache)} coordinate entries")
        
        found_coordinates = 0
        
        for line_num, line in enumerate(lines):
            if not line.strip():
                continue
                
            try:
                fields = line.split('|')
                
                if len(fields) >= 8:  # Minimum required fields
                    aqs_id = fields[2] if len(fields) > 2 else ''
                    
                    # Try multiple coordinate lookup strategies
                    lat, lon = 0, 0
                    
                    # Strategy 1: Exact match
                    if aqs_id in self.coordinate_cache:
                        lat, lon = self.coordinate_cache[aqs_id]
                    # Strategy 2: First 9 characters
                    elif len(aqs_id) >= 9 and aqs_id[:9] in self.coordinate_cache:
                        lat, lon = self.coordinate_cache[aqs_id[:9]]
                    # Strategy 3: First 7 characters (state+county+site)
                    elif len(aqs_id) >= 7 and aqs_id[:7] in self.coordinate_cache:
                        lat, lon = self.coordinate_cache[aqs_id[:7]]
                    # Strategy 4: Look for similar patterns
                    else:
                        for cached_id in self.coordinate_cache:
                            if len(aqs_id) >= 5 and len(cached_id) >= 5:
                                if aqs_id[:5] == cached_id[:5]:  # Same state+county
                                    lat, lon = self.coordinate_cache[cached_id]
                                    break
                    
                    # If still no coordinates, use site name matching as last resort
                    if lat == 0 and lon == 0 and len(fields) > 3:
                        site_name = fields[3].upper()
                        for city, coords in self.fallback_coordinates.items():
                            if city.upper() in site_name:
                                lat, lon = coords
                                break
                    
                    # Skip if no coordinates found
                    if lat == 0 and lon == 0:
                        continue
                    
                    found_coordinates += 1
                    
                    # Parse other fields
                    try:
                        value = float(fields[7]) if len(fields) > 7 and fields[7].replace('.','').replace('-','').replace('+','').isdigit() else 0
                    except:
                        value = 0
                        
                    parameter = fields[5] if len(fields) > 5 else 'UNKNOWN'
                    site_name = fields[3] if len(fields) > 3 else 'Unknown Site'
                    units = fields[6] if len(fields) > 6 else ''
                    
                    # Calculate AQI
                    aqi = self.calculate_aqi(parameter, value)
                    
                    # Determine if it's an air quality parameter
                    air_quality_params = ['OZONE', 'PM2.5', 'PM10', 'NO2', 'SO2', 'CO']
                    is_air_quality = parameter in air_quality_params
                    
                    record = {
                        'DateObserved': fields[0] if len(fields) > 0 else '',
                        'HourObserved': fields[1] if len(fields) > 1 else '',
                        'AQSID': aqs_id,
                        'SiteName': site_name,
                        'ParameterName': parameter,
                        'ReportingUnits': units,
                        'Value': value,
                        'DataSource': fields[8] if len(fields) > 8 else '',
                        'Latitude': lat,
                        'Longitude': lon,
                        'AQI': aqi,
                        'Category': {'Name': self.get_aqi_category(aqi) if is_air_quality else 'Meteorological'},
                        'ReportingArea': site_name,
                        'StateCode': aqs_id[:2] if len(aqs_id) >= 2 else 'US',
                        'IsAirQuality': is_air_quality
                    }
                    
                    data.append(record)
                    
                    # Debug: Show first few successful matches
                    if found_coordinates <= 3:
                        print(f"βœ… Match {found_coordinates}: {site_name} -> {lat:.4f}, {lon:.4f}")
                    
            except Exception as e:
                if line_num < 5:  # Only show errors for first few lines
                    print(f"❌ Error parsing line {line_num}: {str(e)}")
                continue
        
        print(f"βœ… Found coordinates for {found_coordinates} out of {len(lines)} stations")
        return data
    
    def create_map(self, data: List[Dict]) -> str:
        """Create interactive map with accurate coordinates"""
        if not data:
            m = folium.Map(location=[39.8283, -98.5795], zoom_start=4)
            folium.Marker(
                [39.8283, -98.5795],
                popup="No air quality data available.",
                icon=folium.Icon(color='red', icon='info-sign')
            ).add_to(m)
            return m._repr_html_()
        
        # Calculate center
        lats = [item['Latitude'] for item in data]
        lons = [item['Longitude'] for item in data]
        center_lat = sum(lats) / len(lats)
        center_lon = sum(lons) / len(lons)
        
        print(f"πŸ—ΊοΈ Creating map centered at {center_lat:.4f}, {center_lon:.4f} with {len(data)} markers")
        
        # Create map
        m = folium.Map(location=[center_lat, center_lon], zoom_start=4)
        
        # Add markers
        added_markers = 0
        for item in data:
            try:
                lat = item['Latitude']
                lon = item['Longitude']
                aqi = item['AQI']
                parameter = item['ParameterName']
                site_name = item['SiteName']
                value = item['Value']
                units = item['ReportingUnits']
                category = item['Category']['Name']
                is_air_quality = item.get('IsAirQuality', False)
                
                # Create popup content
                if is_air_quality:
                    popup_content = f"""
                    <div style="width: 250px;">
                        <h4>{site_name} <span style="color: red;">🌬️ Air Quality</span></h4>
                        <p><b>Parameter:</b> {parameter}</p>
                        <p><b>Value:</b> {value} {units}</p>
                        <p><b>AQI:</b> {aqi} ({category})</p>
                        <p><b>Coordinates:</b> {lat:.4f}, {lon:.4f}</p>
                        <p><b>Time:</b> {item['DateObserved']} {item['HourObserved']}:00 GMT</p>
                        <p><b>Station ID:</b> {item['AQSID']}</p>
                    </div>
                    """
                    tooltip_text = f"{site_name}: {parameter} = {value} {units} (AQI: {aqi})"
                else:
                    popup_content = f"""
                    <div style="width: 250px;">
                        <h4>{site_name} <span style="color: blue;">🌑️ Meteorological</span></h4>
                        <p><b>Parameter:</b> {parameter}</p>
                        <p><b>Value:</b> {value} {units}</p>
                        <p><b>Coordinates:</b> {lat:.4f}, {lon:.4f}</p>
                        <p><b>Time:</b> {item['DateObserved']} {item['HourObserved']}:00 GMT</p>
                        <p><b>Station ID:</b> {item['AQSID']}</p>
                    </div>
                    """
                    tooltip_text = f"{site_name}: {parameter} = {value} {units}"
                
                # Determine marker appearance
                if is_air_quality:
                    # Color based on AQI for air quality parameters
                    if aqi <= 50:
                        marker_color = 'green'
                    elif aqi <= 100:
                        marker_color = 'orange'
                    elif aqi <= 150:
                        marker_color = 'orange'
                    elif aqi <= 200:
                        marker_color = 'red'
                    elif aqi <= 300:
                        marker_color = 'purple'
                    else:
                        marker_color = 'darkred'
                    icon_type = 'cloud'
                else:
                    # Meteorological parameters use blue
                    marker_color = 'blue'
                    icon_type = 'info-sign'
                
                # Add marker
                folium.Marker(
                    [lat, lon],
                    popup=folium.Popup(popup_content, max_width=300),
                    tooltip=tooltip_text,
                    icon=folium.Icon(color=marker_color, icon=icon_type)
                ).add_to(m)
                
                added_markers += 1
                
            except Exception as e:
                print(f"❌ Error adding marker: {str(e)}")
                continue
        
        print(f"βœ… Added {added_markers} markers to map")
        
        # Add legend
        legend_html = """
        <div style="position: fixed; 
                    bottom: 50px; left: 50px; width: 200px; height: 260px; 
                    background-color: white; border:2px solid grey; z-index:9999; 
                    font-size:12px; padding: 10px">
        <h4>Station Legend</h4>
        <p><b>🌬️ Air Quality (AQI):</b></p>
        <p><i class="fa fa-circle" style="color:green"></i> Good (0-50)</p>
        <p><i class="fa fa-circle" style="color:orange"></i> Moderate (51-100)</p>
        <p><i class="fa fa-circle" style="color:orange"></i> Unhealthy for Sensitive (101-150)</p>
        <p><i class="fa fa-circle" style="color:red"></i> Unhealthy (151-200)</p>
        <p><i class="fa fa-circle" style="color:purple"></i> Very Unhealthy (201-300)</p>
        <p><i class="fa fa-circle" style="color:darkred"></i> Hazardous (301+)</p>
        <p><b>🌑️ Meteorological:</b></p>
        <p><i class="fa fa-circle" style="color:blue"></i> Weather Data</p>
        </div>
        """
        m.get_root().html.add_child(folium.Element(legend_html))
        
        return m._repr_html_()
    
    def create_data_table(self, data: List[Dict]) -> pd.DataFrame:
        """Create data table"""
        if not data:
            return pd.DataFrame()
        
        table_data = []
        for item in data:
            is_air_quality = item.get('IsAirQuality', False)
            table_data.append({
                'Site Name': item['SiteName'],
                'State': item['StateCode'],
                'Parameter': item['ParameterName'],
                'Type': '🌬️ Air Quality' if is_air_quality else '🌑️ Meteorological',
                'Value': item['Value'],
                'Units': item['ReportingUnits'],
                'AQI': item['AQI'] if is_air_quality else 'N/A',
                'Category': item['Category']['Name'],
                'Latitude': round(item['Latitude'], 4),
                'Longitude': round(item['Longitude'], 4),
                'Date': item['DateObserved'],
                'Hour (GMT)': item['HourObserved'],
                'Station ID': item['AQSID']
            })
        
        df = pd.DataFrame(table_data)
        
        # Convert AQI column to numeric for proper sorting, keeping 'N/A' as 0
        df['AQI_numeric'] = pd.to_numeric(df['AQI'], errors='coerce').fillna(0)
        
        # Sort by AQI (air quality first, then meteorological)
        df_sorted = df.sort_values(['AQI_numeric', 'Parameter'], ascending=[False, True])
        
        # Drop the helper column
        return df_sorted.drop('AQI_numeric', axis=1)

# Initialize mapper
mapper = AccurateAirQualityMapper()

def update_map():
    """Update map with accurate coordinates"""
    print("πŸš€ Starting comprehensive air quality and meteorological mapping...")
    
    # Fetch data
    data, status = mapper.fetch_airnow_bulk_data()
    
    if data:
        # Show parameter breakdown
        df_temp = pd.DataFrame(data)
        param_counts = df_temp['ParameterName'].value_counts()
        
        print(f"\nπŸ“ˆ Data Summary:")
        print(f"Total stations: {len(df_temp)}")
        print(f"Parameters monitored: {df_temp['ParameterName'].nunique()}")
        print(f"Unique sites: {df_temp['SiteName'].nunique()}")
        
        print(f"\nParameter breakdown:")
        for param, count in param_counts.head(10).items():
            print(f"{param}: {count}")
        
        # Update status to include breakdown
        air_quality_count = len([d for d in data if d.get('IsAirQuality', False)])
        met_count = len(data) - air_quality_count
        status = f"βœ… SUCCESS: {len(data)} total stations ({air_quality_count} air quality + {met_count} meteorological) from {len(set(d['SiteName'] for d in data))} unique sites"
    
    # Create map
    map_html = mapper.create_map(data)
    
    # Create table
    df = mapper.create_data_table(data)
    
    return map_html, df, status

# Create Gradio interface
with gr.Blocks(title="Accurate AirNow Sensor Map", theme=gr.themes.Soft()) as demo:
    
    gr.Markdown(
        """
        # 🎯 Complete AirNow Monitoring Network Map (FIXED)
        
        **βœ… IMPROVED COORDINATE MATCHING + FALLBACK DATA**
        
        This fixed version addresses the coordinate matching issues:
        1. **Better EPA Data Parsing**: Handles different CSV column formats
        2. **Multiple Lookup Strategies**: Tries various AQS ID matching approaches
        3. **Fallback Coordinates**: Uses known city coordinates when EPA lookup fails
        4. **Demo Data**: Shows working map even if AirNow data is unavailable
        5. **Enhanced Error Handling**: Better debugging and error recovery
        
        ## Key Improvements:
        - πŸ”§ **Fixed coordinate lookup** with multiple fallback strategies
        - πŸ“ **Demo stations** in major cities if real data unavailable
        - πŸ› **Better error handling** and debugging output
        - πŸ”„ **More robust data parsing** for different file formats
        - ⚑ **Guaranteed map display** with at least demo data
        """
    )
    
    with gr.Row():
        load_button = gr.Button("🎯 Load Complete Monitoring Network (FIXED)", variant="primary", size="lg")
    
    status_text = gr.Markdown("Click the button above to load monitoring stations with improved coordinate matching.")
    
    with gr.Tabs():
        with gr.TabItem("πŸ—ΊοΈ Complete Network Map"):
            map_output = gr.HTML(label="Fixed AirNow Monitoring Network with Working Coordinates")
        
        with gr.TabItem("πŸ“Š All Station Data"):
            data_table = gr.Dataframe(
                label="All Monitoring Stations (Air Quality + Meteorological)",
                interactive=False
            )
    
    gr.Markdown(
        """
        ## Fixes Applied:
        
        **1. Coordinate Matching**: Multiple strategies for matching AQS IDs with EPA coordinates
        **2. Error Recovery**: Fallback to demo data if real data unavailable
        **3. Better Parsing**: Handles different CSV column name formats
        **4. Debug Output**: Shows exactly what's happening during data processing
        **5. Guaranteed Results**: Will always show at least demo stations on map
        
        ## Data Sources:
        - **EPA Coordinates**: aqs_monitors.zip (primary) + aqs_sites.zip (backup)
        - **AirNow Data**: Real-time hourly files from files.airnowtech.org
        - **Fallback**: Demo stations in major US cities with known coordinates
        """
    )
    
    # Set up event handler
    load_button.click(
        fn=update_map,
        inputs=[],
        outputs=[map_output, data_table, status_text]
    )

if __name__ == "__main__":
    demo.launch()