File size: 32,429 Bytes
e234691 93f3aed e234691 a51c4e8 e234691 a51c4e8 b0c2c45 93f3aed a51c4e8 027a5d8 93f3aed a51c4e8 e234691 a51c4e8 5569c77 a51c4e8 5569c77 a51c4e8 e234691 5569c77 a51c4e8 5569c77 a51c4e8 5569c77 a51c4e8 5569c77 a51c4e8 5569c77 a51c4e8 5569c77 a51c4e8 5569c77 a51c4e8 5569c77 a51c4e8 5569c77 a51c4e8 5569c77 a51c4e8 e234691 a51c4e8 e234691 a51c4e8 482b80f e234691 5569c77 e234691 b21ff10 a51c4e8 e234691 b21ff10 e234691 a51c4e8 5569c77 b0c2c45 a51c4e8 e234691 5569c77 a5fff32 b0c2c45 5569c77 93f3aed b0c2c45 a51c4e8 b0c2c45 3ebeb98 a51c4e8 5569c77 b0c2c45 3ebeb98 b0c2c45 b65674c 5569c77 a51c4e8 5569c77 a51c4e8 e234691 5569c77 a51c4e8 5569c77 a51c4e8 5569c77 a51c4e8 e234691 5569c77 6268d66 b0c2c45 5569c77 a51c4e8 5569c77 a51c4e8 5569c77 e234691 b0c2c45 e234691 6268d66 5569c77 6268d66 b0c2c45 3ebeb98 b0c2c45 5569c77 b0c2c45 5569c77 b0c2c45 b65674c 5569c77 b65674c e234691 a51c4e8 e234691 a51c4e8 e234691 b0c2c45 a51c4e8 b0c2c45 5569c77 e234691 b0c2c45 a51c4e8 5569c77 e234691 a51c4e8 5569c77 e234691 6268d66 e234691 5569c77 6268d66 e234691 5569c77 6268d66 e234691 6268d66 e234691 5569c77 e234691 5569c77 a51c4e8 e234691 5569c77 e234691 6268d66 e234691 6268d66 e234691 6268d66 e234691 a51c4e8 e234691 be54199 e234691 6268d66 e234691 a51c4e8 6268d66 a51c4e8 6268d66 a51c4e8 e234691 be54199 e234691 55126fb 93f3aed a51c4e8 e234691 a51c4e8 6268d66 e234691 a51c4e8 e234691 93f3aed 6268d66 5569c77 6268d66 e234691 93f3aed a51c4e8 e234691 a51c4e8 e234691 a51c4e8 5569c77 93f3aed 5569c77 027a5d8 5569c77 93f3aed 5569c77 e234691 5569c77 e234691 5569c77 e234691 6268d66 5569c77 e234691 6268d66 e234691 6268d66 e234691 5569c77 e234691 5569c77 6268d66 5569c77 e234691 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 |
import gradio as gr
import requests
import folium
import pandas as pd
import time
import os
import zipfile
import io
from typing import Dict, List, Tuple
from datetime import datetime, timedelta
import pytz
class AccurateAirQualityMapper:
"""Air Quality Mapper with precise EPA coordinates"""
def __init__(self):
self.airnow_base_url = "https://files.airnowtech.org"
self.epa_base_url = "https://aqs.epa.gov/aqsweb/airdata"
self.aqi_colors = {
"Good": "#00E400",
"Moderate": "#FFFF00",
"Unhealthy for Sensitive Groups": "#FF7E00",
"Unhealthy": "#FF0000",
"Very Unhealthy": "#8F3F97",
"Hazardous": "#7E0023"
}
self.aqi_ranges = {
(0, 50): "Good",
(51, 100): "Moderate",
(101, 150): "Unhealthy for Sensitive Groups",
(151, 200): "Unhealthy",
(201, 300): "Very Unhealthy",
(301, 500): "Hazardous"
}
# Cache for coordinate lookups
self.coordinate_cache = {}
self.fallback_coordinates = self.get_fallback_coordinates()
def get_fallback_coordinates(self) -> Dict[str, Tuple[float, float]]:
"""Fallback coordinates for major monitoring locations"""
return {
# Major cities with known monitoring stations
"Los Angeles": (34.0522, -118.2437),
"New York": (40.7128, -74.0060),
"Chicago": (41.8781, -87.6298),
"Houston": (29.7604, -95.3698),
"Phoenix": (33.4484, -112.0740),
"Philadelphia": (39.9526, -75.1652),
"San Antonio": (29.4241, -98.4936),
"San Diego": (32.7157, -117.1611),
"Dallas": (32.7767, -96.7970),
"San Francisco": (37.7749, -122.4194),
"Boston": (42.3601, -71.0589),
"Seattle": (47.6062, -122.3321),
"Denver": (39.7392, -104.9903),
"Atlanta": (33.7490, -84.3880),
"Miami": (25.7617, -80.1918)
}
def download_epa_coordinates(self) -> Dict[str, Tuple[float, float]]:
"""Download EPA monitor coordinates and create lookup dictionary"""
print("πΊοΈ Downloading EPA monitor coordinates...")
coordinates = {}
try:
# Try the monitors file first
monitors_url = f"{self.epa_base_url}/aqs_monitors.zip"
print(f"Downloading: {monitors_url}")
response = requests.get(monitors_url, timeout=60)
if response.status_code == 200:
print(f"β
Downloaded monitors file ({len(response.content)} bytes)")
# Extract CSV from ZIP
with zipfile.ZipFile(io.BytesIO(response.content)) as z:
csv_files = [f for f in z.namelist() if f.endswith('.csv')]
if csv_files:
csv_filename = csv_files[0]
print(f"π Extracting: {csv_filename}")
with z.open(csv_filename) as f:
# Read CSV with pandas
df = pd.read_csv(f, dtype=str) # Read as strings first
print(f"π Loaded {len(df)} monitor records")
print(f"Columns: {list(df.columns)}")
# Show sample data
if len(df) > 0:
print("Sample row:")
print(df.iloc[0].to_dict())
# Create lookup by various ID formats
for _, row in df.iterrows():
try:
# Try different column name variations
state_code = None
county_code = None
site_number = None
lat = None
lon = None
# Find state code
for col in ['State Code', 'State_Code', 'state_code', 'STATE_CODE']:
if col in df.columns and pd.notna(row.get(col)):
state_code = str(row[col]).zfill(2)
break
# Find county code
for col in ['County Code', 'County_Code', 'county_code', 'COUNTY_CODE']:
if col in df.columns and pd.notna(row.get(col)):
county_code = str(row[col]).zfill(3)
break
# Find site number
for col in ['Site Number', 'Site_Number', 'site_number', 'SITE_NUMBER']:
if col in df.columns and pd.notna(row.get(col)):
site_number = str(row[col]).zfill(4)
break
# Find latitude
for col in ['Latitude', 'latitude', 'LATITUDE', 'Lat']:
if col in df.columns and pd.notna(row.get(col)):
lat = float(row[col])
break
# Find longitude
for col in ['Longitude', 'longitude', 'LONGITUDE', 'Lon']:
if col in df.columns and pd.notna(row.get(col)):
lon = float(row[col])
break
# Create AQS ID if we have the components
if all([state_code, county_code, site_number, lat, lon]):
if lat != 0 and lon != 0:
aqs_id = f"{state_code}{county_code}{site_number}"
coordinates[aqs_id] = (lat, lon)
# Also store partial IDs for matching
site_id = f"{state_code}{county_code}{site_number}"
coordinates[site_id[:9]] = (lat, lon) # First 9 chars
coordinates[site_id[:7]] = (lat, lon) # State+County+Site
except (ValueError, TypeError) as e:
continue
print(f"β
Created coordinate lookup for {len(coordinates)} stations")
else:
print(f"β Failed to download monitors: HTTP {response.status_code}")
except Exception as e:
print(f"β Error downloading EPA coordinates: {str(e)}")
# If we don't have many coordinates, try a simpler approach
if len(coordinates) < 100:
print("π Trying alternative coordinate source...")
try:
# Try sites file as backup
sites_url = f"{self.epa_base_url}/aqs_sites.zip"
response = requests.get(sites_url, timeout=60)
if response.status_code == 200:
with zipfile.ZipFile(io.BytesIO(response.content)) as z:
csv_files = [f for f in z.namelist() if f.endswith('.csv')]
if csv_files:
with z.open(csv_files[0]) as f:
df = pd.read_csv(f, dtype=str)
print(f"π Backup file has {len(df)} records")
for _, row in df.iterrows():
try:
# Similar logic for backup file
state_code = str(row.get('State Code', row.get('STATE_CODE', ''))).zfill(2)
county_code = str(row.get('County Code', row.get('COUNTY_CODE', ''))).zfill(3)
site_number = str(row.get('Site Number', row.get('SITE_NUMBER', ''))).zfill(4)
lat = float(row.get('Latitude', row.get('LATITUDE', 0)))
lon = float(row.get('Longitude', row.get('LONGITUDE', 0)))
if all([state_code != "00", county_code != "000", site_number != "0000"]) and lat != 0 and lon != 0:
aqs_id = f"{state_code}{county_code}{site_number}"
coordinates[aqs_id] = (lat, lon)
coordinates[aqs_id[:9]] = (lat, lon)
coordinates[aqs_id[:7]] = (lat, lon)
except (ValueError, TypeError):
continue
print(f"β
Total coordinates after backup: {len(coordinates)}")
except Exception as e:
print(f"β Error with backup coordinates: {str(e)}")
self.coordinate_cache = coordinates
return coordinates
def get_aqi_category(self, aqi_value: int) -> str:
"""Get AQI category based on value"""
for (min_val, max_val), category in self.aqi_ranges.items():
if min_val <= aqi_value <= max_val:
return category
return "Unknown"
def calculate_aqi(self, parameter: str, value: float) -> int:
"""Calculate AQI for common parameters"""
if parameter == 'OZONE' and value > 0:
if value <= 54: return int((50/54) * value)
elif value <= 70: return int(51 + (49/16) * (value - 54))
elif value <= 85: return int(101 + (49/15) * (value - 70))
elif value <= 105: return int(151 + (49/20) * (value - 85))
else: return int(201 + (199/95) * min(value - 105, 95))
elif parameter == 'PM2.5' and value >= 0:
if value <= 12.0: return int((50/12) * value)
elif value <= 35.4: return int(51 + (49/23.4) * (value - 12))
elif value <= 55.4: return int(101 + (49/20) * (value - 35.4))
elif value <= 150.4: return int(151 + (49/95) * (value - 55.4))
else: return int(201 + (199/149.6) * min(value - 150.4, 149.6))
elif parameter == 'PM10' and value >= 0:
if value <= 54: return int((50/54) * value)
elif value <= 154: return int(51 + (49/100) * (value - 54))
elif value <= 254: return int(101 + (49/100) * (value - 154))
elif value <= 354: return int(151 + (49/100) * (value - 254))
else: return int(201 + (199/146) * min(value - 354, 146))
return 0
def fetch_airnow_bulk_data(self) -> Tuple[List[Dict], str]:
"""Fetch current AirNow bulk data"""
print("π― Fetching AirNow bulk data...")
try:
# Get current GMT time
gmt_now = datetime.now(pytz.UTC)
# Try current hour and previous few hours
for hour_offset in range(0, 12): # Try more hours
try:
target_time = gmt_now - timedelta(hours=hour_offset)
filename = f"HourlyData_{target_time.strftime('%Y%m%d%H')}.dat"
url = f"{self.airnow_base_url}/airnow/today/{filename}"
print(f"π Trying: {url}")
response = requests.get(url, timeout=30)
if response.status_code == 200 and response.text.strip():
print(f"β
Found data file with {len(response.text.splitlines())} lines")
print(f"First few lines:")
lines = response.text.strip().split('\n')
for i, line in enumerate(lines[:3]):
print(f" Line {i+1}: {line}")
# Parse the data
data = self.parse_hourly_data_file(response.text)
if data:
print(f"π Parsed {len(data)} station records")
return data, f"β
SUCCESS: {len(data)} monitoring stations from {filename}"
except Exception as e:
print(f"β Error trying hour {hour_offset}: {str(e)}")
continue
time.sleep(0.1)
# If no data found, create some demo data
print("π No recent data found, creating demo data...")
demo_data = self.create_demo_data()
return demo_data, f"β οΈ DEMO: {len(demo_data)} demo stations (no recent AirNow data available)"
except Exception as e:
# Fallback to demo data
demo_data = self.create_demo_data()
return demo_data, f"β Error fetching data, showing demo: {str(e)}"
def create_demo_data(self) -> List[Dict]:
"""Create demo data with known coordinates"""
demo_data = []
for city, (lat, lon) in self.fallback_coordinates.items():
# Add an air quality station
demo_data.append({
'DateObserved': datetime.now().strftime('%m/%d/%y'),
'HourObserved': str(datetime.now().hour).zfill(2),
'AQSID': f"DEMO_{city}_AQ",
'SiteName': f"{city} Air Quality Monitor",
'ParameterName': 'PM2.5',
'ReportingUnits': 'UG/M3',
'Value': 15.0 + (hash(city) % 20), # Vary by city
'DataSource': 'DEMO',
'Latitude': lat,
'Longitude': lon,
'AQI': 50 + (hash(city) % 50),
'Category': {'Name': 'Moderate'},
'ReportingArea': city,
'StateCode': 'US',
'IsAirQuality': True
})
# Add a meteorological station
demo_data.append({
'DateObserved': datetime.now().strftime('%m/%d/%y'),
'HourObserved': str(datetime.now().hour).zfill(2),
'AQSID': f"DEMO_{city}_MET",
'SiteName': f"{city} Weather Station",
'ParameterName': 'TEMP',
'ReportingUnits': 'FAHRENHEIT',
'Value': 70.0 + (hash(city) % 30),
'DataSource': 'DEMO',
'Latitude': lat + 0.01, # Slightly offset
'Longitude': lon + 0.01,
'AQI': 0,
'Category': {'Name': 'Meteorological'},
'ReportingArea': city,
'StateCode': 'US',
'IsAirQuality': False
})
return demo_data
def parse_hourly_data_file(self, text: str) -> List[Dict]:
"""Parse AirNow hourly data format"""
lines = text.strip().split('\n')
data = []
# Download coordinates if not cached
if not self.coordinate_cache:
self.download_epa_coordinates()
print(f"π Parsing {len(lines)} lines with {len(self.coordinate_cache)} coordinate entries")
found_coordinates = 0
for line_num, line in enumerate(lines):
if not line.strip():
continue
try:
fields = line.split('|')
if len(fields) >= 8: # Minimum required fields
aqs_id = fields[2] if len(fields) > 2 else ''
# Try multiple coordinate lookup strategies
lat, lon = 0, 0
# Strategy 1: Exact match
if aqs_id in self.coordinate_cache:
lat, lon = self.coordinate_cache[aqs_id]
# Strategy 2: First 9 characters
elif len(aqs_id) >= 9 and aqs_id[:9] in self.coordinate_cache:
lat, lon = self.coordinate_cache[aqs_id[:9]]
# Strategy 3: First 7 characters (state+county+site)
elif len(aqs_id) >= 7 and aqs_id[:7] in self.coordinate_cache:
lat, lon = self.coordinate_cache[aqs_id[:7]]
# Strategy 4: Look for similar patterns
else:
for cached_id in self.coordinate_cache:
if len(aqs_id) >= 5 and len(cached_id) >= 5:
if aqs_id[:5] == cached_id[:5]: # Same state+county
lat, lon = self.coordinate_cache[cached_id]
break
# If still no coordinates, use site name matching as last resort
if lat == 0 and lon == 0 and len(fields) > 3:
site_name = fields[3].upper()
for city, coords in self.fallback_coordinates.items():
if city.upper() in site_name:
lat, lon = coords
break
# Skip if no coordinates found
if lat == 0 and lon == 0:
continue
found_coordinates += 1
# Parse other fields
try:
value = float(fields[7]) if len(fields) > 7 and fields[7].replace('.','').replace('-','').replace('+','').isdigit() else 0
except:
value = 0
parameter = fields[5] if len(fields) > 5 else 'UNKNOWN'
site_name = fields[3] if len(fields) > 3 else 'Unknown Site'
units = fields[6] if len(fields) > 6 else ''
# Calculate AQI
aqi = self.calculate_aqi(parameter, value)
# Determine if it's an air quality parameter
air_quality_params = ['OZONE', 'PM2.5', 'PM10', 'NO2', 'SO2', 'CO']
is_air_quality = parameter in air_quality_params
record = {
'DateObserved': fields[0] if len(fields) > 0 else '',
'HourObserved': fields[1] if len(fields) > 1 else '',
'AQSID': aqs_id,
'SiteName': site_name,
'ParameterName': parameter,
'ReportingUnits': units,
'Value': value,
'DataSource': fields[8] if len(fields) > 8 else '',
'Latitude': lat,
'Longitude': lon,
'AQI': aqi,
'Category': {'Name': self.get_aqi_category(aqi) if is_air_quality else 'Meteorological'},
'ReportingArea': site_name,
'StateCode': aqs_id[:2] if len(aqs_id) >= 2 else 'US',
'IsAirQuality': is_air_quality
}
data.append(record)
# Debug: Show first few successful matches
if found_coordinates <= 3:
print(f"β
Match {found_coordinates}: {site_name} -> {lat:.4f}, {lon:.4f}")
except Exception as e:
if line_num < 5: # Only show errors for first few lines
print(f"β Error parsing line {line_num}: {str(e)}")
continue
print(f"β
Found coordinates for {found_coordinates} out of {len(lines)} stations")
return data
def create_map(self, data: List[Dict]) -> str:
"""Create interactive map with accurate coordinates"""
if not data:
m = folium.Map(location=[39.8283, -98.5795], zoom_start=4)
folium.Marker(
[39.8283, -98.5795],
popup="No air quality data available.",
icon=folium.Icon(color='red', icon='info-sign')
).add_to(m)
return m._repr_html_()
# Calculate center
lats = [item['Latitude'] for item in data]
lons = [item['Longitude'] for item in data]
center_lat = sum(lats) / len(lats)
center_lon = sum(lons) / len(lons)
print(f"πΊοΈ Creating map centered at {center_lat:.4f}, {center_lon:.4f} with {len(data)} markers")
# Create map
m = folium.Map(location=[center_lat, center_lon], zoom_start=4)
# Add markers
added_markers = 0
for item in data:
try:
lat = item['Latitude']
lon = item['Longitude']
aqi = item['AQI']
parameter = item['ParameterName']
site_name = item['SiteName']
value = item['Value']
units = item['ReportingUnits']
category = item['Category']['Name']
is_air_quality = item.get('IsAirQuality', False)
# Create popup content
if is_air_quality:
popup_content = f"""
<div style="width: 250px;">
<h4>{site_name} <span style="color: red;">π¬οΈ Air Quality</span></h4>
<p><b>Parameter:</b> {parameter}</p>
<p><b>Value:</b> {value} {units}</p>
<p><b>AQI:</b> {aqi} ({category})</p>
<p><b>Coordinates:</b> {lat:.4f}, {lon:.4f}</p>
<p><b>Time:</b> {item['DateObserved']} {item['HourObserved']}:00 GMT</p>
<p><b>Station ID:</b> {item['AQSID']}</p>
</div>
"""
tooltip_text = f"{site_name}: {parameter} = {value} {units} (AQI: {aqi})"
else:
popup_content = f"""
<div style="width: 250px;">
<h4>{site_name} <span style="color: blue;">π‘οΈ Meteorological</span></h4>
<p><b>Parameter:</b> {parameter}</p>
<p><b>Value:</b> {value} {units}</p>
<p><b>Coordinates:</b> {lat:.4f}, {lon:.4f}</p>
<p><b>Time:</b> {item['DateObserved']} {item['HourObserved']}:00 GMT</p>
<p><b>Station ID:</b> {item['AQSID']}</p>
</div>
"""
tooltip_text = f"{site_name}: {parameter} = {value} {units}"
# Determine marker appearance
if is_air_quality:
# Color based on AQI for air quality parameters
if aqi <= 50:
marker_color = 'green'
elif aqi <= 100:
marker_color = 'orange'
elif aqi <= 150:
marker_color = 'orange'
elif aqi <= 200:
marker_color = 'red'
elif aqi <= 300:
marker_color = 'purple'
else:
marker_color = 'darkred'
icon_type = 'cloud'
else:
# Meteorological parameters use blue
marker_color = 'blue'
icon_type = 'info-sign'
# Add marker
folium.Marker(
[lat, lon],
popup=folium.Popup(popup_content, max_width=300),
tooltip=tooltip_text,
icon=folium.Icon(color=marker_color, icon=icon_type)
).add_to(m)
added_markers += 1
except Exception as e:
print(f"β Error adding marker: {str(e)}")
continue
print(f"β
Added {added_markers} markers to map")
# Add legend
legend_html = """
<div style="position: fixed;
bottom: 50px; left: 50px; width: 200px; height: 260px;
background-color: white; border:2px solid grey; z-index:9999;
font-size:12px; padding: 10px">
<h4>Station Legend</h4>
<p><b>π¬οΈ Air Quality (AQI):</b></p>
<p><i class="fa fa-circle" style="color:green"></i> Good (0-50)</p>
<p><i class="fa fa-circle" style="color:orange"></i> Moderate (51-100)</p>
<p><i class="fa fa-circle" style="color:orange"></i> Unhealthy for Sensitive (101-150)</p>
<p><i class="fa fa-circle" style="color:red"></i> Unhealthy (151-200)</p>
<p><i class="fa fa-circle" style="color:purple"></i> Very Unhealthy (201-300)</p>
<p><i class="fa fa-circle" style="color:darkred"></i> Hazardous (301+)</p>
<p><b>π‘οΈ Meteorological:</b></p>
<p><i class="fa fa-circle" style="color:blue"></i> Weather Data</p>
</div>
"""
m.get_root().html.add_child(folium.Element(legend_html))
return m._repr_html_()
def create_data_table(self, data: List[Dict]) -> pd.DataFrame:
"""Create data table"""
if not data:
return pd.DataFrame()
table_data = []
for item in data:
is_air_quality = item.get('IsAirQuality', False)
table_data.append({
'Site Name': item['SiteName'],
'State': item['StateCode'],
'Parameter': item['ParameterName'],
'Type': 'π¬οΈ Air Quality' if is_air_quality else 'π‘οΈ Meteorological',
'Value': item['Value'],
'Units': item['ReportingUnits'],
'AQI': item['AQI'] if is_air_quality else 'N/A',
'Category': item['Category']['Name'],
'Latitude': round(item['Latitude'], 4),
'Longitude': round(item['Longitude'], 4),
'Date': item['DateObserved'],
'Hour (GMT)': item['HourObserved'],
'Station ID': item['AQSID']
})
df = pd.DataFrame(table_data)
# Convert AQI column to numeric for proper sorting, keeping 'N/A' as 0
df['AQI_numeric'] = pd.to_numeric(df['AQI'], errors='coerce').fillna(0)
# Sort by AQI (air quality first, then meteorological)
df_sorted = df.sort_values(['AQI_numeric', 'Parameter'], ascending=[False, True])
# Drop the helper column
return df_sorted.drop('AQI_numeric', axis=1)
# Initialize mapper
mapper = AccurateAirQualityMapper()
def update_map():
"""Update map with accurate coordinates"""
print("π Starting comprehensive air quality and meteorological mapping...")
# Fetch data
data, status = mapper.fetch_airnow_bulk_data()
if data:
# Show parameter breakdown
df_temp = pd.DataFrame(data)
param_counts = df_temp['ParameterName'].value_counts()
print(f"\nπ Data Summary:")
print(f"Total stations: {len(df_temp)}")
print(f"Parameters monitored: {df_temp['ParameterName'].nunique()}")
print(f"Unique sites: {df_temp['SiteName'].nunique()}")
print(f"\nParameter breakdown:")
for param, count in param_counts.head(10).items():
print(f"{param}: {count}")
# Update status to include breakdown
air_quality_count = len([d for d in data if d.get('IsAirQuality', False)])
met_count = len(data) - air_quality_count
status = f"β
SUCCESS: {len(data)} total stations ({air_quality_count} air quality + {met_count} meteorological) from {len(set(d['SiteName'] for d in data))} unique sites"
# Create map
map_html = mapper.create_map(data)
# Create table
df = mapper.create_data_table(data)
return map_html, df, status
# Create Gradio interface
with gr.Blocks(title="Accurate AirNow Sensor Map", theme=gr.themes.Soft()) as demo:
gr.Markdown(
"""
# π― Complete AirNow Monitoring Network Map (FIXED)
**β
IMPROVED COORDINATE MATCHING + FALLBACK DATA**
This fixed version addresses the coordinate matching issues:
1. **Better EPA Data Parsing**: Handles different CSV column formats
2. **Multiple Lookup Strategies**: Tries various AQS ID matching approaches
3. **Fallback Coordinates**: Uses known city coordinates when EPA lookup fails
4. **Demo Data**: Shows working map even if AirNow data is unavailable
5. **Enhanced Error Handling**: Better debugging and error recovery
## Key Improvements:
- π§ **Fixed coordinate lookup** with multiple fallback strategies
- π **Demo stations** in major cities if real data unavailable
- π **Better error handling** and debugging output
- π **More robust data parsing** for different file formats
- β‘ **Guaranteed map display** with at least demo data
"""
)
with gr.Row():
load_button = gr.Button("π― Load Complete Monitoring Network (FIXED)", variant="primary", size="lg")
status_text = gr.Markdown("Click the button above to load monitoring stations with improved coordinate matching.")
with gr.Tabs():
with gr.TabItem("πΊοΈ Complete Network Map"):
map_output = gr.HTML(label="Fixed AirNow Monitoring Network with Working Coordinates")
with gr.TabItem("π All Station Data"):
data_table = gr.Dataframe(
label="All Monitoring Stations (Air Quality + Meteorological)",
interactive=False
)
gr.Markdown(
"""
## Fixes Applied:
**1. Coordinate Matching**: Multiple strategies for matching AQS IDs with EPA coordinates
**2. Error Recovery**: Fallback to demo data if real data unavailable
**3. Better Parsing**: Handles different CSV column name formats
**4. Debug Output**: Shows exactly what's happening during data processing
**5. Guaranteed Results**: Will always show at least demo stations on map
## Data Sources:
- **EPA Coordinates**: aqs_monitors.zip (primary) + aqs_sites.zip (backup)
- **AirNow Data**: Real-time hourly files from files.airnowtech.org
- **Fallback**: Demo stations in major US cities with known coordinates
"""
)
# Set up event handler
load_button.click(
fn=update_map,
inputs=[],
outputs=[map_output, data_table, status_text]
)
if __name__ == "__main__":
demo.launch() |