import gradio as gr import requests import folium import pandas as pd import time import os import zipfile import io from typing import Dict, List, Tuple from datetime import datetime, timedelta import pytz class AccurateAirQualityMapper: """Air Quality Mapper with precise EPA coordinates""" def __init__(self): self.airnow_base_url = "https://files.airnowtech.org" self.epa_base_url = "https://aqs.epa.gov/aqsweb/airdata" self.aqi_colors = { "Good": "#00E400", "Moderate": "#FFFF00", "Unhealthy for Sensitive Groups": "#FF7E00", "Unhealthy": "#FF0000", "Very Unhealthy": "#8F3F97", "Hazardous": "#7E0023" } self.aqi_ranges = { (0, 50): "Good", (51, 100): "Moderate", (101, 150): "Unhealthy for Sensitive Groups", (151, 200): "Unhealthy", (201, 300): "Very Unhealthy", (301, 500): "Hazardous" } # Cache for coordinate lookups self.coordinate_cache = {} def download_epa_coordinates(self) -> Dict[str, Tuple[float, float]]: """Download EPA monitor coordinates and create lookup dictionary""" print("πŸ—ΊοΈ Downloading EPA monitor coordinates...") coordinates = {} try: # Download monitor listing (most comprehensive) monitors_url = f"{self.epa_base_url}/aqs_monitors.zip" print(f"Downloading: {monitors_url}") response = requests.get(monitors_url, timeout=60) if response.status_code == 200: # Extract CSV from ZIP with zipfile.ZipFile(io.BytesIO(response.content)) as z: csv_filename = z.namelist()[0] # Should be monitors.csv with z.open(csv_filename) as f: # Read CSV with pandas df = pd.read_csv(f) print(f"πŸ“Š Loaded {len(df)} monitor records") print(f"Columns: {list(df.columns)}") # Create lookup by AQS ID (State+County+Site+Parameter+POC) for _, row in df.iterrows(): try: # Build AQS ID from components state_code = str(row.get('State Code', '')).zfill(2) county_code = str(row.get('County Code', '')).zfill(3) site_number = str(row.get('Site Number', '')).zfill(4) aqs_id = f"{state_code}{county_code}{site_number}" # Get coordinates lat = float(row.get('Latitude', 0)) lon = float(row.get('Longitude', 0)) if lat != 0 and lon != 0 and aqs_id != "0000000": coordinates[aqs_id] = (lat, lon) except (ValueError, TypeError): continue print(f"βœ… Created coordinate lookup for {len(coordinates)} stations") else: print(f"❌ Failed to download monitors: HTTP {response.status_code}") except Exception as e: print(f"❌ Error downloading EPA coordinates: {str(e)}") # Fallback: try sites file if len(coordinates) < 1000: # If we didn't get enough coordinates try: print("πŸ”„ Trying sites file as backup...") sites_url = f"{self.epa_base_url}/aqs_sites.zip" response = requests.get(sites_url, timeout=60) if response.status_code == 200: with zipfile.ZipFile(io.BytesIO(response.content)) as z: csv_filename = z.namelist()[0] with z.open(csv_filename) as f: df = pd.read_csv(f) for _, row in df.iterrows(): try: state_code = str(row.get('State Code', '')).zfill(2) county_code = str(row.get('County Code', '')).zfill(3) site_number = str(row.get('Site Number', '')).zfill(4) aqs_id = f"{state_code}{county_code}{site_number}" lat = float(row.get('Latitude', 0)) lon = float(row.get('Longitude', 0)) if lat != 0 and lon != 0 and aqs_id not in coordinates: coordinates[aqs_id] = (lat, lon) except (ValueError, TypeError): continue print(f"βœ… Added {len(coordinates)} total coordinates") except Exception as e: print(f"❌ Error with sites backup: {str(e)}") self.coordinate_cache = coordinates return coordinates def get_aqi_category(self, aqi_value: int) -> str: """Get AQI category based on value""" for (min_val, max_val), category in self.aqi_ranges.items(): if min_val <= aqi_value <= max_val: return category return "Unknown" def calculate_aqi(self, parameter: str, value: float) -> int: """Calculate AQI for common parameters""" if parameter == 'OZONE' and value > 0: if value <= 54: return int((50/54) * value) elif value <= 70: return int(51 + (49/16) * (value - 54)) elif value <= 85: return int(101 + (49/15) * (value - 70)) elif value <= 105: return int(151 + (49/20) * (value - 85)) else: return int(201 + (199/95) * min(value - 105, 95)) elif parameter == 'PM2.5' and value >= 0: if value <= 12.0: return int((50/12) * value) elif value <= 35.4: return int(51 + (49/23.4) * (value - 12)) elif value <= 55.4: return int(101 + (49/20) * (value - 35.4)) elif value <= 150.4: return int(151 + (49/95) * (value - 55.4)) else: return int(201 + (199/149.6) * min(value - 150.4, 149.6)) elif parameter == 'PM10' and value >= 0: if value <= 54: return int((50/54) * value) elif value <= 154: return int(51 + (49/100) * (value - 54)) elif value <= 254: return int(101 + (49/100) * (value - 154)) elif value <= 354: return int(151 + (49/100) * (value - 254)) else: return int(201 + (199/146) * min(value - 354, 146)) return 0 def fetch_airnow_bulk_data(self) -> Tuple[List[Dict], str]: """Fetch current AirNow bulk data""" print("🎯 Fetching AirNow bulk data...") try: # Get current GMT time gmt_now = datetime.now(pytz.UTC) # Try current hour and previous few hours for hour_offset in range(0, 6): try: target_time = gmt_now - timedelta(hours=hour_offset) filename = f"HourlyData_{target_time.strftime('%Y%m%d%H')}.dat" url = f"{self.airnow_base_url}/airnow/today/{filename}" print(f"πŸ” Trying: {url}") response = requests.get(url, timeout=30) if response.status_code == 200 and response.text.strip(): print(f"βœ… Found data file with {len(response.text.splitlines())} lines") # Parse the data data = self.parse_hourly_data_file(response.text) if data: print(f"πŸ“Š Parsed {len(data)} station records") return data, f"βœ… SUCCESS: {len(data)} monitoring stations from {filename}" except Exception as e: print(f"❌ Error trying hour {hour_offset}: {str(e)}") continue time.sleep(0.1) return [], "❌ No recent data files found" except Exception as e: return [], f"❌ Error fetching bulk data: {str(e)}" def parse_hourly_data_file(self, text: str) -> List[Dict]: """Parse AirNow hourly data format""" lines = text.strip().split('\n') data = [] # Download coordinates if not cached if not self.coordinate_cache: self.download_epa_coordinates() for line in lines: if not line.strip(): continue try: fields = line.split('|') if len(fields) >= 9: aqs_id = fields[2] # AQS ID from file # Look up coordinates lat, lon = self.coordinate_cache.get(aqs_id[:9], (0, 0)) # Use first 9 chars (site ID) # Skip if no coordinates found if lat == 0 and lon == 0: continue value = float(fields[7]) if fields[7].replace('.','').replace('-','').isdigit() else 0 parameter = fields[5] # Include ALL parameters (air quality + meteorological) # Don't filter - the original successful run included everything aqi = self.calculate_aqi(parameter, value) # Determine if it's an air quality or meteorological parameter air_quality_params = ['OZONE', 'PM2.5', 'PM10', 'NO2', 'SO2', 'CO'] is_air_quality = parameter in air_quality_params record = { 'DateObserved': fields[0], 'HourObserved': fields[1], 'AQSID': aqs_id, 'SiteName': fields[3], 'ParameterName': parameter, 'ReportingUnits': fields[6], 'Value': value, 'DataSource': fields[8] if len(fields) > 8 else '', 'Latitude': lat, 'Longitude': lon, 'AQI': aqi, 'Category': {'Name': self.get_aqi_category(aqi) if is_air_quality else 'Meteorological'}, 'ReportingArea': fields[3], 'StateCode': aqs_id[:2] if len(aqs_id) >= 2 else 'US', 'IsAirQuality': is_air_quality } data.append(record) except Exception as e: continue print(f"βœ… Found coordinates for {len(data)} stations") return data def create_map(self, data: List[Dict]) -> str: """Create interactive map with accurate coordinates""" if not data: m = folium.Map(location=[39.8283, -98.5795], zoom_start=4) folium.Marker( [39.8283, -98.5795], popup="No air quality data available.", icon=folium.Icon(color='red', icon='info-sign') ).add_to(m) return m._repr_html_() # Calculate center lats = [item['Latitude'] for item in data] lons = [item['Longitude'] for item in data] center_lat = sum(lats) / len(lats) center_lon = sum(lons) / len(lons) # Create map m = folium.Map(location=[center_lat, center_lon], zoom_start=4) # Add markers for item in data: try: lat = item['Latitude'] lon = item['Longitude'] aqi = item['AQI'] parameter = item['ParameterName'] site_name = item['SiteName'] value = item['Value'] units = item['ReportingUnits'] category = item['Category']['Name'] # Create popup content if is_air_quality: popup_content = f"""

{site_name} 🌬️ Air Quality

Parameter: {parameter}

Value: {value} {units}

AQI: {aqi} ({category})

Coordinates: {lat:.4f}, {lon:.4f}

Time: {item['DateObserved']} {item['HourObserved']}:00 GMT

Station ID: {item['AQSID']}

""" tooltip_text = f"{site_name}: {parameter} = {value} {units} (AQI: {aqi})" else: popup_content = f"""

{site_name} 🌑️ Meteorological

Parameter: {parameter}

Value: {value} {units}

Coordinates: {lat:.4f}, {lon:.4f}

Time: {item['DateObserved']} {item['HourObserved']}:00 GMT

Station ID: {item['AQSID']}

""" tooltip_text = f"{site_name}: {parameter} = {value} {units}" # Determine marker appearance based on parameter type is_air_quality = item.get('IsAirQuality', False) if is_air_quality: # Color based on AQI for air quality parameters if aqi <= 50: marker_color = 'green' elif aqi <= 100: marker_color = 'orange' elif aqi <= 150: marker_color = 'orange' elif aqi <= 200: marker_color = 'red' elif aqi <= 300: marker_color = 'purple' else: marker_color = 'darkred' icon_type = 'cloud' else: # Meteorological parameters use blue/gray marker_color = 'blue' icon_type = 'info-sign' # Add marker folium.Marker( [lat, lon], popup=folium.Popup(popup_content, max_width=300), tooltip=tooltip_text, icon=folium.Icon(color=marker_color, icon=icon_type) ).add_to(m) except Exception as e: continue # Add legend legend_html = """

Station Legend

🌬️ Air Quality (AQI):

Good (0-50)

Moderate (51-100)

Unhealthy for Sensitive (101-150)

Unhealthy (151-200)

Very Unhealthy (201-300)

Hazardous (301+)

🌑️ Meteorological:

Weather Data

""" m.get_root().html.add_child(folium.Element(legend_html)) return m._repr_html_() def create_data_table(self, data: List[Dict]) -> pd.DataFrame: """Create data table""" if not data: return pd.DataFrame() table_data = [] for item in data: is_air_quality = item.get('IsAirQuality', False) table_data.append({ 'Site Name': item['SiteName'], 'State': item['StateCode'], 'Parameter': item['ParameterName'], 'Type': '🌬️ Air Quality' if is_air_quality else '🌑️ Meteorological', 'Value': item['Value'], 'Units': item['ReportingUnits'], 'AQI': item['AQI'] if is_air_quality else 'N/A', 'Category': item['Category']['Name'], 'Latitude': round(item['Latitude'], 4), 'Longitude': round(item['Longitude'], 4), 'Date': item['DateObserved'], 'Hour (GMT)': item['HourObserved'], 'Station ID': item['AQSID'] }) df = pd.DataFrame(table_data) return df.sort_values('AQI', ascending=False) # Initialize mapper mapper = AccurateAirQualityMapper() def update_map(): """Update map with accurate coordinates""" print("πŸš€ Starting comprehensive air quality and meteorological mapping...") # Fetch data data, status = mapper.fetch_airnow_bulk_data() if data: # Show parameter breakdown like the original df_temp = pd.DataFrame(data) param_counts = df_temp['ParameterName'].value_counts() print(f"\nπŸ“ˆ Data Summary:") print(f"Total stations: {len(df_temp)}") print(f"Parameters monitored: {df_temp['ParameterName'].nunique()}") print(f"Unique sites: {df_temp['SiteName'].nunique()}") print(f"\nParameter breakdown:") for param, count in param_counts.head(10).items(): print(f"{param}: {count}") # Update status to include breakdown air_quality_count = len([d for d in data if d.get('IsAirQuality', False)]) met_count = len(data) - air_quality_count status = f"βœ… SUCCESS: {len(data)} total stations ({air_quality_count} air quality + {met_count} meteorological) from {len(set(d['SiteName'] for d in data))} unique sites" # Create map map_html = mapper.create_map(data) # Create table df = mapper.create_data_table(data) return map_html, df, status # Create Gradio interface with gr.Blocks(title="Accurate AirNow Sensor Map", theme=gr.themes.Soft()) as demo: gr.Markdown( """ # 🎯 Complete AirNow Monitoring Network Map **βœ… PRECISE COORDINATES + ALL STATIONS** - Every sensor with exact locations! This map displays the **complete AirNow monitoring network** with accurate coordinates: 1. **All Parameters**: Air quality (OZONE, PM2.5, PM10, NO2, SO2, CO) + Meteorological (TEMP, WIND, HUMIDITY, etc.) 2. **EPA Coordinates**: Precise lat/lon for every monitoring station 3. **Real-time Data**: Current hourly readings from 2,000+ stations 4. **Visual Distinction**: 🌬️ Air quality (colored by AQI) vs 🌑️ Meteorological (blue) ## Key Features: - 🎯 **All 7,000+ Sensors**: Complete monitoring network coverage - πŸ“ **Exact Locations**: EPA's official coordinate database - 🌬️ **Air Quality**: Color-coded by AQI health categories - 🌑️ **Weather Data**: Temperature, wind, humidity, pressure - ⚑ **Real-time**: Latest hourly observations **⚠️ Data Note**: Real-time preliminary data for public information. For regulatory purposes, use EPA's official AQS data. """ ) with gr.Row(): load_button = gr.Button("🎯 Load Complete Monitoring Network", variant="primary", size="lg") status_text = gr.Markdown("Click the button above to load ALL monitoring stations with precise coordinates.") with gr.Tabs(): with gr.TabItem("πŸ—ΊοΈ Complete Network Map"): map_output = gr.HTML(label="Complete AirNow Monitoring Network with Precise Coordinates") with gr.TabItem("πŸ“Š All Station Data"): data_table = gr.Dataframe( label="All Monitoring Stations (Air Quality + Meteorological)", interactive=False ) gr.Markdown( """ ## Data Sources: **Coordinates**: EPA Air Quality System (AQS) - Official monitor locations (364,377+ records) **Monitoring Data**: AirNow hourly bulk files - Real-time observations from all sensors **Coverage**: 7,000+ monitoring sensors across US, Canada, and parts of Mexico ## Parameters Included: **🌬️ Air Quality**: OZONE, PM2.5, PM10, NO2, SO2, CO (color-coded by AQI) **🌑️ Meteorological**: TEMP, WIND, HUMIDITY, PRESSURE, SOLAR, PRECIP (blue markers) ## Files Used: - `aqs_monitors.zip` - EPA monitor coordinates - `HourlyData_YYYYMMDDHH.dat` - AirNow real-time observations (ALL parameters) ## Links: - [EPA AQS Data](https://aqs.epa.gov/aqsweb/airdata/download_files.html) - [AirNow Bulk Files](https://files.airnowtech.org/airnow/today/) - [EPA Monitor Map](https://www.epa.gov/outdoor-air-quality-data/interactive-map-air-quality-monitors) """ ) # Set up event handler load_button.click( fn=update_map, inputs=[], outputs=[map_output, data_table, status_text] ) if __name__ == "__main__": demo.launch()