File size: 28,358 Bytes
752fda7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
import gradio as gr
import requests
import pandas as pd
import folium
from folium.plugins import MarkerCluster
import tempfile
import os
import json

# Get API credentials from environment variables
EPA_AQS_API_BASE_URL = "https://aqs.epa.gov/data/api"
EMAIL = os.environ.get("EPA_AQS_EMAIL", "")  # Get from environment variable
API_KEY = os.environ.get("EPA_AQS_API_KEY", "")  # Get from environment variable

class AirQualityApp:
    def __init__(self):
        self.states = {
            "AL": "Alabama", "AK": "Alaska", "AZ": "Arizona", "AR": "Arkansas", 
            "CA": "California", "CO": "Colorado", "CT": "Connecticut", "DE": "Delaware", 
            "FL": "Florida", "GA": "Georgia", "HI": "Hawaii", "ID": "Idaho", 
            "IL": "Illinois", "IN": "Indiana", "IA": "Iowa", "KS": "Kansas", 
            "KY": "Kentucky", "LA": "Louisiana", "ME": "Maine", "MD": "Maryland", 
            "MA": "Massachusetts", "MI": "Michigan", "MN": "Minnesota", "MS": "Mississippi", 
            "MO": "Missouri", "MT": "Montana", "NE": "Nebraska", "NV": "Nevada", 
            "NH": "New Hampshire", "NJ": "New Jersey", "NM": "New Mexico", "NY": "New York", 
            "NC": "North Carolina", "ND": "North Dakota", "OH": "Ohio", "OK": "Oklahoma", 
            "OR": "Oregon", "PA": "Pennsylvania", "RI": "Rhode Island", "SC": "South Carolina", 
            "SD": "South Dakota", "TN": "Tennessee", "TX": "Texas", "UT": "Utah", 
            "VT": "Vermont", "VA": "Virginia", "WA": "Washington", "WV": "West Virginia", 
            "WI": "Wisconsin", "WY": "Wyoming", "DC": "District of Columbia"
        }
        
        # Mapping from two-letter state codes to numeric state codes for API
        self.state_code_mapping = {
            "AL": "01", "AK": "02", "AZ": "04", "AR": "05", 
            "CA": "06", "CO": "08", "CT": "09", "DE": "10", 
            "FL": "12", "GA": "13", "HI": "15", "ID": "16", 
            "IL": "17", "IN": "18", "IA": "19", "KS": "20", 
            "KY": "21", "LA": "22", "ME": "23", "MD": "24", 
            "MA": "25", "MI": "26", "MN": "27", "MS": "28", 
            "MO": "29", "MT": "30", "NE": "31", "NV": "32", 
            "NH": "33", "NJ": "34", "NM": "35", "NY": "36", 
            "NC": "37", "ND": "38", "OH": "39", "OK": "40", 
            "OR": "41", "PA": "42", "RI": "44", "SC": "45", 
            "SD": "46", "TN": "47", "TX": "48", "UT": "49", 
            "VT": "50", "VA": "51", "WA": "53", "WV": "54", 
            "WI": "55", "WY": "56", "DC": "11"
        }
        
        # AQI categories with their corresponding colors
        self.aqi_categories = {
            "Good": "#00e400",  # Green
            "Moderate": "#ffff00",  # Yellow
            "Unhealthy for Sensitive Groups": "#ff7e00",  # Orange
            "Unhealthy": "#ff0000",  # Red
            "Very Unhealthy": "#99004c",  # Purple
            "Hazardous": "#7e0023"  # Maroon
        }
        
        # Sample county data for demo
        self.mock_counties = {
            "CA": [
                {"code": "037", "value": "Los Angeles"},
                {"code": "067", "value": "Sacramento"},
                {"code": "073", "value": "San Diego"},
                {"code": "075", "value": "San Francisco"}
            ],
            "NY": [
                {"code": "061", "value": "New York"},
                {"code": "047", "value": "Kings (Brooklyn)"},
                {"code": "081", "value": "Queens"},
                {"code": "005", "value": "Bronx"}
            ],
            "TX": [
                {"code": "201", "value": "Harris (Houston)"},
                {"code": "113", "value": "Dallas"},
                {"code": "029", "value": "Bexar (San Antonio)"},
                {"code": "453", "value": "Travis (Austin)"}
            ]
        }
        
        # Sample parameters for demo
        self.mock_parameters = [
            {"code": "88101", "value_represented": "PM2.5 - Local Conditions"},
            {"code": "44201", "value_represented": "Ozone"},
            {"code": "42401", "value_represented": "Sulfur dioxide"},
            {"code": "42101", "value_represented": "Carbon monoxide"},
            {"code": "42602", "value_represented": "Nitrogen dioxide"},
            {"code": "81102", "value_represented": "PM10 - Local Conditions"}
        ]
    
    def get_monitors(self, state_code, county_code=None, parameter_code=None):
        """Fetch monitoring stations for a given state and optional county"""
        # If we don't have API credentials, use mock data
        if not EMAIL or not API_KEY:
            return self.mock_get_monitors(state_code, county_code, parameter_code)
        
        # Convert state code to numeric format for API
        api_state_code = state_code
        if len(state_code) == 2 and state_code in self.state_code_mapping:
            api_state_code = self.state_code_mapping[state_code]
            
        # API endpoint for monitoring sites
        endpoint = f"{EPA_AQS_API_BASE_URL}/monitors/byState"
        
        params = {
            "email": EMAIL,
            "key": API_KEY,
            "state": api_state_code,
            "bdate": "20240101",  # Beginning date (YYYYMMDD)
            "edate": "20240414",  # End date (YYYYMMDD)
        }
        
        if county_code:
            params["county"] = county_code
            
        if parameter_code:
            params["param"] = parameter_code
        
        try:
            response = requests.get(endpoint, params=params)
            data = response.json()
            
            # Handle the specific response structure we observed
            if isinstance(data, dict):
                if "Data" in data and isinstance(data["Data"], list):
                    return data["Data"]
                elif "Header" in data and isinstance(data["Header"], list):
                    if data["Header"][0].get("status") == "Success":
                        return data.get("Data", [])
            
            # If we couldn't parse the response format, return empty list
            print(f"Unexpected response format for monitors: {type(data)}")
            return []
        except Exception as e:
            print(f"Error fetching monitors: {e}")
            return []

    def get_counties(self, state_code):
        """Fetch counties for a given state"""
        # If we don't have API credentials, use mock data
        if not EMAIL or not API_KEY:
            return self.mock_get_counties(state_code)
        
        # Convert state code to numeric format for API
        api_state_code = state_code
        if len(state_code) == 2 and state_code in self.state_code_mapping:
            api_state_code = self.state_code_mapping[state_code]
        
        endpoint = f"{EPA_AQS_API_BASE_URL}/list/countiesByState"
        
        params = {
            "email": EMAIL,
            "key": API_KEY,
            "state": api_state_code
        }
        
        try:
            response = requests.get(endpoint, params=params)
            data = response.json()
            
            # Handle the specific response structure we observed
            counties = []
            if isinstance(data, dict) and "Data" in data and isinstance(data["Data"], list):
                counties = data["Data"]
            
            # Format as "code: name" for dropdown
            result = []
            for c in counties:
                code = c.get("code")
                value = c.get("value_represented")
                if code and value:
                    result.append(f"{code}: {value}")
            
            return result
        except Exception as e:
            print(f"Error fetching counties: {e}")
            return []

    def get_parameters(self):
        """Fetch available parameter codes (pollutants)"""
        # If we don't have API credentials, use mock data
        if not EMAIL or not API_KEY:
            return self.mock_get_parameters()
        
        endpoint = f"{EPA_AQS_API_BASE_URL}/list/parametersByClass"
        
        params = {
            "email": EMAIL,
            "key": API_KEY,
            "pc": "CRITERIA"  # Filter to criteria pollutants
        }
        
        try:
            response = requests.get(endpoint, params=params)
            data = response.json()
            
            # Handle the specific response structure we observed
            parameters = []
            if isinstance(data, dict) and "Data" in data and isinstance(data["Data"], list):
                parameters = data["Data"]
            
            # Format as "code: name" for dropdown
            result = []
            for p in parameters:
                code = p.get("code")
                value = p.get("value_represented")
                if not code:
                    code = p.get("parameter_code")
                if not value:
                    value = p.get("parameter_name")
                
                if code and value:
                    result.append(f"{code}: {value}")
            
            return result
        except Exception as e:
            print(f"Error fetching parameters: {e}")
            return []
    
    def get_latest_aqi(self, state_code, county_code=None, parameter_code=None):
        """Fetch the latest AQI data for monitors"""
        # If we don't have API credentials, use mock data
        if not EMAIL or not API_KEY:
            return []  # We don't have mock AQI data for simplicity
        
        # Convert state code to numeric format for API
        api_state_code = state_code
        if len(state_code) == 2 and state_code in self.state_code_mapping:
            api_state_code = self.state_code_mapping[state_code]
        
        endpoint = f"{EPA_AQS_API_BASE_URL}/dailyData/byState"
        
        params = {
            "email": EMAIL,
            "key": API_KEY,
            "state": api_state_code,
            "bdate": "20240314",  # Beginning date (YYYYMMDD) - last 30 days
            "edate": "20240414",  # End date (YYYYMMDD) - current date
        }
        
        if county_code:
            params["county"] = county_code
            
        if parameter_code:
            params["param"] = parameter_code
        
        try:
            response = requests.get(endpoint, params=params)
            data = response.json()
            
            # Handle the specific response structure we observed
            if isinstance(data, dict) and "Data" in data and isinstance(data["Data"], list):
                return data["Data"]
            else:
                print(f"Unexpected response format for AQI data: {type(data)}")
                return []
        except Exception as e:
            print(f"Error fetching AQI data: {e}")
            return []
    
    def create_map(self, state_code, county_code=None, parameter_code=None):
        """Create a map with air quality monitoring stations"""
        monitors = self.get_monitors(state_code, county_code, parameter_code)
        
        if not monitors:
            return "No monitoring stations found for the selected criteria."
        
        # Convert to DataFrame for easier manipulation
        df = pd.DataFrame(monitors)
        
        # Create a map centered on the mean latitude and longitude
        center_lat = df["latitude"].mean()
        center_lon = df["longitude"].mean()
        
        # Create a map with a specific width and height - make it bigger
        m = folium.Map(location=[center_lat, center_lon], zoom_start=7, width='100%', height=700)
        
        # Add a marker cluster
        marker_cluster = MarkerCluster().add_to(m)
        
        # Get latest AQI data if credentials are provided
        aqi_data = {}
        if EMAIL and API_KEY:
            aqi_results = self.get_latest_aqi(state_code, county_code, parameter_code)
            # Create a lookup dictionary by site ID
            for item in aqi_results:
                site_id = f"{item['state_code']}-{item['county_code']}-{item['site_number']}"
                if site_id not in aqi_data or item['date_local'] > aqi_data[site_id]['date_local']:
                    aqi_data[site_id] = item
        
        # Add markers for each monitoring station
        for _, row in df.iterrows():
            site_id = f"{row['state_code']}-{row['county_code']}-{row['site_number']}"
            
            # Default marker color is blue
            color = "blue"
            aqi_info = ""
            
            # If we have AQI data for this monitor, set the color based on AQI category
            if site_id in aqi_data:
                aqi_value = aqi_data[site_id].get('aqi', 0)
                if aqi_value:
                    aqi_category = self.get_aqi_category(aqi_value)
                    color = self.aqi_categories.get(aqi_category, "blue")
                    aqi_info = f"<br>Latest AQI: {aqi_value} ({aqi_category})"
            
            # Create popup content
            popup_content = f"""
            <b>{row['local_site_name']}</b><br>
            Parameter: {row['parameter_name']}<br>
            Site ID: {site_id}<br>
            Latitude: {row['latitude']}, Longitude: {row['longitude']}{aqi_info}
            """
            
            # Add marker to cluster
            folium.Marker(
                location=[row["latitude"], row["longitude"]],
                popup=folium.Popup(popup_content, max_width=300),
                icon=folium.Icon(color=color, icon="cloud"),
            ).add_to(marker_cluster)
        
        # Return map HTML and legend HTML separately
        map_html = m._repr_html_()
        
        # Create legend HTML outside the map
        legend_html = self.create_legend_html()
        
        return {"map": map_html, "legend": legend_html}
    
    def create_legend_html(self):
        """Create the HTML for the AQI legend"""
        legend_html = """
        <div style="padding: 10px; border: 1px solid #ccc; border-radius: 5px; background-color: white; margin-top: 10px;">
        <h4 style="margin-top: 0;">AQI Categories</h4>
        <div style="display: grid; grid-template-columns: auto 1fr; grid-gap: 5px; align-items: center;">
        """
        
        for category, color in self.aqi_categories.items():
            legend_html += f'<span style="background-color: {color}; width: 20px; height: 20px; display: inline-block;"></span>'
            legend_html += f'<span>{category}</span>'
        
        legend_html += """
        </div>
        </div>
        """
        return legend_html
    
    def get_aqi_category(self, aqi_value):
        """Determine AQI category based on value"""
        aqi = int(aqi_value)
        if aqi <= 50:
            return "Good"
        elif aqi <= 100:
            return "Moderate"
        elif aqi <= 150:
            return "Unhealthy for Sensitive Groups"
        elif aqi <= 200:
            return "Unhealthy"
        elif aqi <= 300:
            return "Very Unhealthy"
        else:
            return "Hazardous"
    
    def mock_get_counties(self, state_code):
        """Return mock county data for the specified state"""
        if state_code in self.mock_counties:
            counties = self.mock_counties[state_code]
            return [f"{c['code']}: {c['value']}" for c in counties]
        else:
            # Return generic counties for other states
            return [
                "001: County 1",
                "002: County 2",
                "003: County 3",
                "004: County 4"
            ]
    
    def mock_get_parameters(self):
        """Return mock parameter data"""
        return [f"{p['code']}: {p['value_represented']}" for p in self.mock_parameters]
    
    def mock_get_monitors(self, state_code, county_code=None, parameter_code=None):
        """Mock function to return sample data for development"""
        # Get state code in proper format
        if len(state_code) == 2:
            # Convert 2-letter state code to numeric format for mock data
            state_code_mapping = {
                "CA": "06",
                "NY": "36",
                "TX": "48"
            }
            numeric_state_code = state_code_mapping.get(state_code, "01")  # Default to "01" if not found
        else:
            numeric_state_code = state_code
        # Sample data for California
        if state_code == "CA" or numeric_state_code == "06":
            monitors = [
                {
                    "state_code": "06",
                    "county_code": "037",
                    "site_number": "0001",
                    "parameter_code": "88101",
                    "parameter_name": "PM2.5 - Local Conditions",
                    "poc": 1,
                    "latitude": 34.0667,
                    "longitude": -118.2275,
                    "local_site_name": "Los Angeles - North Main Street",
                    "address": "1630 North Main Street",
                    "city_name": "Los Angeles",
                    "cbsa_name": "Los Angeles-Long Beach-Anaheim",
                    "date_established": "1998-01-01",
                    "last_sample_date": "2024-04-10"
                },
                {
                    "state_code": "06",
                    "county_code": "037",
                    "site_number": "0002",
                    "parameter_code": "44201",
                    "parameter_name": "Ozone",
                    "poc": 1,
                    "latitude": 34.0667,
                    "longitude": -118.2275,
                    "local_site_name": "Los Angeles - North Main Street",
                    "address": "1630 North Main Street",
                    "city_name": "Los Angeles",
                    "cbsa_name": "Los Angeles-Long Beach-Anaheim",
                    "date_established": "1998-01-01",
                    "last_sample_date": "2024-04-10"
                },
                {
                    "state_code": "06",
                    "county_code": "067",
                    "site_number": "0010",
                    "parameter_code": "88101",
                    "parameter_name": "PM2.5 - Local Conditions",
                    "poc": 1,
                    "latitude": 38.5661,
                    "longitude": -121.4926,
                    "local_site_name": "Sacramento - T Street",
                    "address": "1309 T Street",
                    "city_name": "Sacramento",
                    "cbsa_name": "Sacramento-Roseville",
                    "date_established": "1999-03-01",
                    "last_sample_date": "2024-04-10"
                },
                {
                    "state_code": "06",
                    "county_code": "073",
                    "site_number": "0005",
                    "parameter_code": "88101",
                    "parameter_name": "PM2.5 - Local Conditions",
                    "poc": 1,
                    "latitude": 32.7333,
                    "longitude": -117.1500,
                    "local_site_name": "San Diego - Beardsley Street",
                    "address": "1110 Beardsley Street",
                    "city_name": "San Diego",
                    "cbsa_name": "San Diego-Carlsbad",
                    "date_established": "1999-04-15",
                    "last_sample_date": "2024-04-10"
                }
            ]
        # Sample data for New York
        elif state_code == "NY" or numeric_state_code == "36":
            monitors = [
                {
                    "state_code": "36",
                    "county_code": "061",
                    "site_number": "0010",
                    "parameter_code": "88101",
                    "parameter_name": "PM2.5 - Local Conditions",
                    "poc": 1,
                    "latitude": 40.7159,
                    "longitude": -73.9876,
                    "local_site_name": "New York - PS 59",
                    "address": "228 East 57th Street",
                    "city_name": "New York",
                    "cbsa_name": "New York-Newark-Jersey City",
                    "date_established": "1999-07-15",
                    "last_sample_date": "2024-04-10"
                },
                {
                    "state_code": "36",
                    "county_code": "061",
                    "site_number": "0079",
                    "parameter_code": "44201",
                    "parameter_name": "Ozone",
                    "poc": 1,
                    "latitude": 40.8160,
                    "longitude": -73.9510,
                    "local_site_name": "New York - IS 52",
                    "address": "681 Kelly Street",
                    "city_name": "Bronx",
                    "cbsa_name": "New York-Newark-Jersey City",
                    "date_established": "1998-01-01",
                    "last_sample_date": "2024-04-10"
                }
            ]
        # Sample data for Texas
        elif state_code == "TX" or numeric_state_code == "48":
            monitors = [
                {
                    "state_code": "48",
                    "county_code": "201",
                    "site_number": "0024",
                    "parameter_code": "88101",
                    "parameter_name": "PM2.5 - Local Conditions",
                    "poc": 1,
                    "latitude": 29.7349,
                    "longitude": -95.3063,
                    "local_site_name": "Houston - Clinton Drive",
                    "address": "9525 Clinton Drive",
                    "city_name": "Houston",
                    "cbsa_name": "Houston-The Woodlands-Sugar Land",
                    "date_established": "1997-09-01",
                    "last_sample_date": "2024-04-10"
                },
                {
                    "state_code": "48",
                    "county_code": "113",
                    "site_number": "0050",
                    "parameter_code": "44201",
                    "parameter_name": "Ozone",
                    "poc": 1,
                    "latitude": 32.8198,
                    "longitude": -96.8602,
                    "local_site_name": "Dallas - Hinton Street",
                    "address": "1415 Hinton Street",
                    "city_name": "Dallas",
                    "cbsa_name": "Dallas-Fort Worth-Arlington",
                    "date_established": "1998-01-01",
                    "last_sample_date": "2024-04-10"
                }
            ]
        else:
            # Default data for other states - generate some random monitors
            monitors = [
                {
                    "state_code": state_code,
                    "county_code": "001",
                    "site_number": "0001",
                    "parameter_code": "88101",
                    "parameter_name": "PM2.5 - Local Conditions",
                    "poc": 1,
                    "latitude": 40.0 + float(ord(state_code[0])) / 10,
                    "longitude": -90.0 - float(ord(state_code[1])) / 10,
                    "local_site_name": f"{self.states.get(state_code, 'Unknown')} - Station 1",
                    "address": "123 Main Street",
                    "city_name": "City 1",
                    "cbsa_name": f"{self.states.get(state_code, 'Unknown')} Metro Area",
                    "date_established": "2000-01-01",
                    "last_sample_date": "2024-04-10"
                },
                {
                    "state_code": state_code,
                    "county_code": "002",
                    "site_number": "0002",
                    "parameter_code": "44201",
                    "parameter_name": "Ozone",
                    "poc": 1,
                    "latitude": 40.5 + float(ord(state_code[0])) / 10,
                    "longitude": -90.5 - float(ord(state_code[1])) / 10,
                    "local_site_name": f"{self.states.get(state_code, 'Unknown')} - Station 2",
                    "address": "456 Oak Street",
                    "city_name": "City 2",
                    "cbsa_name": f"{self.states.get(state_code, 'Unknown')} Metro Area",
                    "date_established": "2000-01-01",
                    "last_sample_date": "2024-04-10"
                }
            ]
        
        # Filter by county if provided
        if county_code:
            monitors = [m for m in monitors if m["county_code"] == county_code]
            
        # Filter by parameter if provided
        if parameter_code:
            monitors = [m for m in monitors if m["parameter_code"] == parameter_code]
            
        return monitors

def create_air_quality_map_ui():
    """Create the Gradio interface for the Air Quality Map application"""
    app = AirQualityApp()
    
    def update_counties(state_code):
        """Callback to update counties dropdown when state changes"""
        counties = app.get_counties(state_code)
        return counties
    
    def show_map(state, county=None, parameter=None):
        """Callback to generate and display the map"""
        # Extract code from county string if provided
        county_code = None
        if county and ":" in county:
            county_code = county.split(":")[0].strip()
            
        # Extract code from parameter string if provided
        parameter_code = None
        if parameter and ":" in parameter:
            parameter_code = parameter.split(":")[0].strip()
            
        # Generate the map
        result = app.create_map(state, county_code, parameter_code)
        
        if isinstance(result, dict):
            # Combine map and legend HTML
            html_content = f"""
            <div>
                {result["map"]}
                {result["legend"]}
            </div>
            """
            return html_content
        else:
            # Return error message or whatever was returned
            return result
    
    # Create the UI
    with gr.Blocks(title="Air Quality Monitoring Stations") as interface:
        gr.Markdown("# NOAA Air Quality Monitoring Stations Map")
        gr.Markdown("""
        This application displays air quality monitoring stations in the United States.
        
        **Note:** To use the actual EPA AQS API, you need to register for an API key at 
        [https://aqs.epa.gov/aqsweb/documents/data_api.html](https://aqs.epa.gov/aqsweb/documents/data_api.html) 
        and update the EMAIL and API_KEY constants in the code.
        
        For demonstration without an API key, the app shows sample data for California (CA), New York (NY), and Texas (TX).
        """)
        
        with gr.Row():
            with gr.Column(scale=1):
                # State dropdown with default value
                state_dropdown = gr.Dropdown(
                    choices=list(app.states.keys()),
                    label="Select State",
                    value="CA"
                )
                
                # County dropdown with mock counties for the default state
                county_dropdown = gr.Dropdown(
                    choices=app.mock_get_counties("CA"),
                    label="Select County (Optional)",
                    allow_custom_value=True
                )
                
                # Parameter dropdown (pollutant type)
                parameter_dropdown = gr.Dropdown(
                    choices=app.mock_get_parameters(),
                    label="Select Pollutant (Optional)",
                    allow_custom_value=True
                )
                
                # Button to generate map
                map_button = gr.Button("Show Map")
            
            # HTML component to display the map in a larger column
            with gr.Column(scale=3):
                map_html = gr.HTML(label="Air Quality Monitoring Stations Map")
        
        # Set up event handlers
        state_dropdown.change(
            fn=update_counties,
            inputs=state_dropdown,
            outputs=county_dropdown
        )
        
        map_button.click(
            fn=show_map,
            inputs=[state_dropdown, county_dropdown, parameter_dropdown],
            outputs=map_html
        )
    
    return interface

# Create and launch the app
if __name__ == "__main__":
    air_quality_map_ui = create_air_quality_map_ui()
    air_quality_map_ui.launch()