Spaces:
Sleeping
Sleeping
Update air_quality_map.py
Browse files- air_quality_map.py +198 -186
air_quality_map.py
CHANGED
@@ -241,7 +241,7 @@ class AirQualityApp:
|
|
241 |
"""Fetch the latest AQI data for monitors"""
|
242 |
# If we don't have API credentials, use mock data
|
243 |
if not EMAIL or not API_KEY:
|
244 |
-
return
|
245 |
|
246 |
# Convert state code to numeric format for API
|
247 |
api_state_code = state_code
|
@@ -285,20 +285,68 @@ class AirQualityApp:
|
|
285 |
return aqi_data
|
286 |
except Exception as e:
|
287 |
print(f"Error fetching AQI data: {e}")
|
288 |
-
return
|
289 |
|
290 |
-
def
|
291 |
-
"""
|
292 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
293 |
monitors = self.get_monitors(state_code, parameter_code=parameter_code)
|
294 |
|
295 |
if not monitors:
|
296 |
-
return
|
|
|
|
|
|
|
|
|
297 |
|
298 |
# Convert to DataFrame for easier manipulation
|
299 |
df = pd.DataFrame(monitors)
|
300 |
|
301 |
-
#
|
302 |
if county_code:
|
303 |
print(f"Filtering by county_code: {county_code}")
|
304 |
county_code_str = str(county_code)
|
@@ -306,31 +354,40 @@ class AirQualityApp:
|
|
306 |
print(f"After filtering, {len(df)} monitors remain")
|
307 |
|
308 |
if len(df) == 0:
|
309 |
-
return
|
|
|
|
|
|
|
|
|
310 |
|
311 |
# Create a map centered on the mean latitude and longitude
|
312 |
center_lat = df["latitude"].mean()
|
313 |
center_lon = df["longitude"].mean()
|
314 |
|
315 |
-
# Create a map with a specific width and height
|
316 |
-
m = folium.Map(location=[center_lat, center_lon], zoom_start=7, width='100%', height=
|
317 |
|
318 |
# Add a marker cluster
|
319 |
marker_cluster = MarkerCluster().add_to(m)
|
320 |
|
321 |
-
# Get latest AQI data
|
322 |
-
aqi_data = {}
|
323 |
if EMAIL and API_KEY:
|
324 |
-
# Again, don't pass county_code to API
|
325 |
aqi_results = self.get_latest_aqi(state_code, parameter_code=parameter_code)
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
334 |
for _, row in df.iterrows():
|
335 |
site_id = f"{row['state_code']}-{row['county_code']}-{row['site_number']}"
|
336 |
|
@@ -339,12 +396,22 @@ class AirQualityApp:
|
|
339 |
|
340 |
# Get AQI data for this station if available
|
341 |
station_aqi_data = aqi_data.get(site_id, [])
|
342 |
-
latest_aqi = None
|
343 |
-
aqi_category = None
|
344 |
|
345 |
-
#
|
346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
347 |
|
|
|
348 |
if station_aqi_data:
|
349 |
# Sort by date (most recent first)
|
350 |
station_aqi_data.sort(key=lambda x: x.get('date_local', ''), reverse=True)
|
@@ -354,74 +421,88 @@ class AirQualityApp:
|
|
354 |
latest_aqi = station_aqi_data[0].get('aqi')
|
355 |
aqi_category = self.get_aqi_category(latest_aqi)
|
356 |
color = self.aqi_categories.get(aqi_category, "blue")
|
357 |
-
|
358 |
-
# Create a table of readings
|
359 |
-
aqi_readings_html = """
|
360 |
-
<h4>Recent Air Quality Readings</h4>
|
361 |
-
<table style="width:100%; border-collapse: collapse; margin-top: 10px;">
|
362 |
-
<tr style="background-color: #f2f2f2;">
|
363 |
-
<th style="padding: 8px; text-align: left; border: 1px solid #ddd;">Date</th>
|
364 |
-
<th style="padding: 8px; text-align: left; border: 1px solid #ddd;">Pollutant</th>
|
365 |
-
<th style="padding: 8px; text-align: left; border: 1px solid #ddd;">AQI</th>
|
366 |
-
<th style="padding: 8px; text-align: left; border: 1px solid #ddd;">Category</th>
|
367 |
-
</tr>
|
368 |
-
"""
|
369 |
-
|
370 |
-
# Add up to 10 most recent readings
|
371 |
-
for i, reading in enumerate(station_aqi_data[:10]):
|
372 |
-
date = reading.get('date_local', 'N/A')
|
373 |
-
pollutant = reading.get('parameter_name', 'N/A')
|
374 |
-
aqi_value = reading.get('aqi', 'N/A')
|
375 |
-
category = self.get_aqi_category(aqi_value) if aqi_value and aqi_value != 'N/A' else 'N/A'
|
376 |
-
|
377 |
-
row_style = ' style="background-color: #f2f2f2;"' if i % 2 == 0 else ''
|
378 |
-
aqi_readings_html += f"""
|
379 |
-
<tr{row_style}>
|
380 |
-
<td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{date}</td>
|
381 |
-
<td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{pollutant}</td>
|
382 |
-
<td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{aqi_value}</td>
|
383 |
-
<td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{category}</td>
|
384 |
-
</tr>
|
385 |
-
"""
|
386 |
-
|
387 |
-
aqi_readings_html += "</table>"
|
388 |
-
|
389 |
-
# If there are more readings than what we showed
|
390 |
-
if len(station_aqi_data) > 10:
|
391 |
-
aqi_readings_html += f"<p><em>Showing 10 of {len(station_aqi_data)} readings</em></p>"
|
392 |
|
393 |
-
# Create popup content with
|
394 |
popup_content = f"""
|
395 |
-
<div
|
396 |
-
<
|
397 |
<p><strong>Site ID:</strong> {site_id}</p>
|
398 |
-
<p
|
399 |
-
<p><strong>City:</strong> {row.get('city_name', 'N/A')}</p>
|
400 |
-
<p><strong>County:</strong> {row.get('county_name', 'N/A')}</p>
|
401 |
-
<p><strong>State:</strong> {row.get('state_name', 'N/A')}</p>
|
402 |
-
<p><strong>Parameter:</strong> {row['parameter_name']}</p>
|
403 |
-
<p><strong>Coordinates:</strong> {row['latitude']}, {row['longitude']}</p>
|
404 |
-
{aqi_readings_html}
|
405 |
</div>
|
406 |
"""
|
407 |
|
408 |
-
#
|
409 |
-
popup = folium.Popup(popup_content, max_width=
|
410 |
-
|
411 |
-
# Add marker to cluster
|
412 |
folium.Marker(
|
413 |
location=[row["latitude"], row["longitude"]],
|
414 |
popup=popup,
|
415 |
icon=folium.Icon(color=color, icon="cloud"),
|
416 |
).add_to(marker_cluster)
|
417 |
|
418 |
-
#
|
419 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
420 |
|
421 |
-
|
422 |
-
|
|
|
|
|
423 |
|
424 |
-
return
|
425 |
|
426 |
def create_legend_html(self):
|
427 |
"""Create the HTML for the AQI legend"""
|
@@ -443,19 +524,22 @@ class AirQualityApp:
|
|
443 |
|
444 |
def get_aqi_category(self, aqi_value):
|
445 |
"""Determine AQI category based on value"""
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
|
|
|
|
|
|
459 |
|
460 |
def mock_get_counties(self, state_code):
|
461 |
"""Return mock county data for the specified state"""
|
@@ -488,6 +572,7 @@ class AirQualityApp:
|
|
488 |
numeric_state_code = state_code_mapping.get(state_code, "01") # Default to "01" if not found
|
489 |
else:
|
490 |
numeric_state_code = state_code
|
|
|
491 |
# Sample data for California
|
492 |
if state_code == "CA" or numeric_state_code == "06":
|
493 |
monitors = [
|
@@ -503,6 +588,8 @@ class AirQualityApp:
|
|
503 |
"local_site_name": "Los Angeles - North Main Street",
|
504 |
"address": "1630 North Main Street",
|
505 |
"city_name": "Los Angeles",
|
|
|
|
|
506 |
"cbsa_name": "Los Angeles-Long Beach-Anaheim",
|
507 |
"date_established": "1998-01-01",
|
508 |
"last_sample_date": "2024-04-10"
|
@@ -519,6 +606,8 @@ class AirQualityApp:
|
|
519 |
"local_site_name": "Los Angeles - North Main Street",
|
520 |
"address": "1630 North Main Street",
|
521 |
"city_name": "Los Angeles",
|
|
|
|
|
522 |
"cbsa_name": "Los Angeles-Long Beach-Anaheim",
|
523 |
"date_established": "1998-01-01",
|
524 |
"last_sample_date": "2024-04-10"
|
@@ -535,6 +624,8 @@ class AirQualityApp:
|
|
535 |
"local_site_name": "Sacramento - T Street",
|
536 |
"address": "1309 T Street",
|
537 |
"city_name": "Sacramento",
|
|
|
|
|
538 |
"cbsa_name": "Sacramento-Roseville",
|
539 |
"date_established": "1999-03-01",
|
540 |
"last_sample_date": "2024-04-10"
|
@@ -551,6 +642,8 @@ class AirQualityApp:
|
|
551 |
"local_site_name": "San Diego - Beardsley Street",
|
552 |
"address": "1110 Beardsley Street",
|
553 |
"city_name": "San Diego",
|
|
|
|
|
554 |
"cbsa_name": "San Diego-Carlsbad",
|
555 |
"date_established": "1999-04-15",
|
556 |
"last_sample_date": "2024-04-10"
|
@@ -571,6 +664,8 @@ class AirQualityApp:
|
|
571 |
"local_site_name": "New York - PS 59",
|
572 |
"address": "228 East 57th Street",
|
573 |
"city_name": "New York",
|
|
|
|
|
574 |
"cbsa_name": "New York-Newark-Jersey City",
|
575 |
"date_established": "1999-07-15",
|
576 |
"last_sample_date": "2024-04-10"
|
@@ -587,6 +682,8 @@ class AirQualityApp:
|
|
587 |
"local_site_name": "New York - IS 52",
|
588 |
"address": "681 Kelly Street",
|
589 |
"city_name": "Bronx",
|
|
|
|
|
590 |
"cbsa_name": "New York-Newark-Jersey City",
|
591 |
"date_established": "1998-01-01",
|
592 |
"last_sample_date": "2024-04-10"
|
@@ -607,6 +704,8 @@ class AirQualityApp:
|
|
607 |
"local_site_name": "Houston - Clinton Drive",
|
608 |
"address": "9525 Clinton Drive",
|
609 |
"city_name": "Houston",
|
|
|
|
|
610 |
"cbsa_name": "Houston-The Woodlands-Sugar Land",
|
611 |
"date_established": "1997-09-01",
|
612 |
"last_sample_date": "2024-04-10"
|
@@ -623,6 +722,8 @@ class AirQualityApp:
|
|
623 |
"local_site_name": "Dallas - Hinton Street",
|
624 |
"address": "1415 Hinton Street",
|
625 |
"city_name": "Dallas",
|
|
|
|
|
626 |
"cbsa_name": "Dallas-Fort Worth-Arlington",
|
627 |
"date_established": "1998-01-01",
|
628 |
"last_sample_date": "2024-04-10"
|
@@ -643,6 +744,8 @@ class AirQualityApp:
|
|
643 |
"local_site_name": f"{self.states.get(state_code, 'Unknown')} - Station 1",
|
644 |
"address": "123 Main Street",
|
645 |
"city_name": "City 1",
|
|
|
|
|
646 |
"cbsa_name": f"{self.states.get(state_code, 'Unknown')} Metro Area",
|
647 |
"date_established": "2000-01-01",
|
648 |
"last_sample_date": "2024-04-10"
|
@@ -659,6 +762,8 @@ class AirQualityApp:
|
|
659 |
"local_site_name": f"{self.states.get(state_code, 'Unknown')} - Station 2",
|
660 |
"address": "456 Oak Street",
|
661 |
"city_name": "City 2",
|
|
|
|
|
662 |
"cbsa_name": f"{self.states.get(state_code, 'Unknown')} Metro Area",
|
663 |
"date_established": "2000-01-01",
|
664 |
"last_sample_date": "2024-04-10"
|
@@ -673,97 +778,4 @@ class AirQualityApp:
|
|
673 |
if parameter_code:
|
674 |
monitors = [m for m in monitors if m["parameter_code"] == parameter_code]
|
675 |
|
676 |
-
return monitors
|
677 |
-
|
678 |
-
def create_air_quality_map_ui():
|
679 |
-
"""Create the Gradio interface for the Air Quality Map application"""
|
680 |
-
app = AirQualityApp()
|
681 |
-
|
682 |
-
def update_counties(state_code):
|
683 |
-
"""Callback to update counties dropdown when state changes"""
|
684 |
-
counties = app.get_counties(state_code)
|
685 |
-
return gr.Dropdown(choices=counties)
|
686 |
-
|
687 |
-
def show_map(state, county=None, parameter=None):
|
688 |
-
"""Callback to generate and display the map"""
|
689 |
-
# Extract code from county string if provided
|
690 |
-
county_code = None
|
691 |
-
if county and ":" in county:
|
692 |
-
county_code = county.split(":")[0].strip()
|
693 |
-
|
694 |
-
# Extract code from parameter string if provided
|
695 |
-
parameter_code = None
|
696 |
-
if parameter and ":" in parameter:
|
697 |
-
parameter_code = parameter.split(":")[0].strip()
|
698 |
-
|
699 |
-
# Generate the map
|
700 |
-
result = app.create_map(state, county_code, parameter_code)
|
701 |
-
|
702 |
-
if isinstance(result, dict):
|
703 |
-
# Return the combined HTML
|
704 |
-
return result["map"]
|
705 |
-
else:
|
706 |
-
# Return error message or whatever was returned
|
707 |
-
return result
|
708 |
-
|
709 |
-
# Create the UI
|
710 |
-
with gr.Blocks(title="Air Quality Monitoring Stations") as interface:
|
711 |
-
gr.Markdown("# NOAA Air Quality Monitoring Stations Map")
|
712 |
-
gr.Markdown("""
|
713 |
-
This application displays air quality monitoring stations in the United States.
|
714 |
-
|
715 |
-
**Note:** To use the actual EPA AQS API, you need to register for an API key and set
|
716 |
-
`EPA_AQS_EMAIL` and `EPA_AQS_API_KEY` environment variables in your Hugging Face Space.
|
717 |
-
|
718 |
-
For demonstration without an API key, the app shows sample data for California (CA), New York (NY), and Texas (TX).
|
719 |
-
""")
|
720 |
-
|
721 |
-
with gr.Row():
|
722 |
-
with gr.Column(scale=1):
|
723 |
-
# State dropdown with default value
|
724 |
-
state_dropdown = gr.Dropdown(
|
725 |
-
choices=list(app.states.keys()),
|
726 |
-
label="Select State",
|
727 |
-
value="CA"
|
728 |
-
)
|
729 |
-
|
730 |
-
# County dropdown with mock counties for the default state
|
731 |
-
county_dropdown = gr.Dropdown(
|
732 |
-
choices=app.mock_get_counties("CA"),
|
733 |
-
label="Select County (Optional)",
|
734 |
-
allow_custom_value=True
|
735 |
-
)
|
736 |
-
|
737 |
-
# Parameter dropdown (pollutant type)
|
738 |
-
parameter_dropdown = gr.Dropdown(
|
739 |
-
choices=app.mock_get_parameters(),
|
740 |
-
label="Select Pollutant (Optional)",
|
741 |
-
allow_custom_value=True
|
742 |
-
)
|
743 |
-
|
744 |
-
# Button to generate map
|
745 |
-
map_button = gr.Button("Show Map")
|
746 |
-
|
747 |
-
# HTML component to display the map in a larger column
|
748 |
-
with gr.Column(scale=3):
|
749 |
-
map_html = gr.HTML(label="Air Quality Monitoring Stations Map")
|
750 |
-
|
751 |
-
# Set up event handlers
|
752 |
-
state_dropdown.change(
|
753 |
-
fn=update_counties,
|
754 |
-
inputs=state_dropdown,
|
755 |
-
outputs=county_dropdown
|
756 |
-
)
|
757 |
-
|
758 |
-
map_button.click(
|
759 |
-
fn=show_map,
|
760 |
-
inputs=[state_dropdown, county_dropdown, parameter_dropdown],
|
761 |
-
outputs=map_html
|
762 |
-
)
|
763 |
-
|
764 |
-
return interface
|
765 |
-
|
766 |
-
# Create and launch the app
|
767 |
-
if __name__ == "__main__":
|
768 |
-
air_quality_map_ui = create_air_quality_map_ui()
|
769 |
-
air_quality_map_ui.launch()
|
|
|
241 |
"""Fetch the latest AQI data for monitors"""
|
242 |
# If we don't have API credentials, use mock data
|
243 |
if not EMAIL or not API_KEY:
|
244 |
+
return self.mock_get_aqi_data(state_code, county_code, parameter_code)
|
245 |
|
246 |
# Convert state code to numeric format for API
|
247 |
api_state_code = state_code
|
|
|
285 |
return aqi_data
|
286 |
except Exception as e:
|
287 |
print(f"Error fetching AQI data: {e}")
|
288 |
+
return self.mock_get_aqi_data(state_code, county_code, parameter_code)
|
289 |
|
290 |
+
def mock_get_aqi_data(self, state_code, county_code=None, parameter_code=None):
|
291 |
+
"""Generate mock AQI data for demonstration"""
|
292 |
+
# Get monitors first
|
293 |
+
monitors = self.mock_get_monitors(state_code, county_code, parameter_code)
|
294 |
+
|
295 |
+
# Create mock AQI data for each monitor
|
296 |
+
mock_aqi_data = []
|
297 |
+
|
298 |
+
for monitor in monitors:
|
299 |
+
# Create 5 days of mock readings for each monitor
|
300 |
+
for i in range(5):
|
301 |
+
# Base AQI value depends on the parameter
|
302 |
+
base_aqi = 0
|
303 |
+
if monitor.get("parameter_code") == "88101": # PM2.5
|
304 |
+
base_aqi = 35
|
305 |
+
elif monitor.get("parameter_code") == "44201": # Ozone
|
306 |
+
base_aqi = 45
|
307 |
+
elif monitor.get("parameter_code") == "42401": # SO2
|
308 |
+
base_aqi = 25
|
309 |
+
else:
|
310 |
+
base_aqi = 30
|
311 |
+
|
312 |
+
# Vary the AQI by +/- 20 points randomly
|
313 |
+
import random
|
314 |
+
aqi_value = max(0, min(300, base_aqi + random.randint(-20, 20)))
|
315 |
+
|
316 |
+
# Date is "2024-04-XX" where XX starts from 10 and goes back
|
317 |
+
date = f"2024-04-{14-i:02d}"
|
318 |
+
|
319 |
+
mock_aqi_data.append({
|
320 |
+
"state_code": monitor.get("state_code"),
|
321 |
+
"county_code": monitor.get("county_code"),
|
322 |
+
"site_number": monitor.get("site_number"),
|
323 |
+
"parameter_code": monitor.get("parameter_code"),
|
324 |
+
"parameter_name": monitor.get("parameter_name"),
|
325 |
+
"date_local": date,
|
326 |
+
"aqi": aqi_value,
|
327 |
+
"category": self.get_aqi_category(aqi_value),
|
328 |
+
"city_name": monitor.get("city_name", "Unknown"),
|
329 |
+
"local_site_name": monitor.get("local_site_name", "Unknown")
|
330 |
+
})
|
331 |
+
|
332 |
+
return mock_aqi_data
|
333 |
+
|
334 |
+
def create_map_and_data(self, state_code, county_code=None, parameter_code=None):
|
335 |
+
"""Create a map with air quality monitoring stations and separate data for display"""
|
336 |
+
# Get monitors (don't pass county_code to API)
|
337 |
monitors = self.get_monitors(state_code, parameter_code=parameter_code)
|
338 |
|
339 |
if not monitors:
|
340 |
+
return {
|
341 |
+
"map": "No monitoring stations found for the selected criteria.",
|
342 |
+
"data_html": "",
|
343 |
+
"legend": ""
|
344 |
+
}
|
345 |
|
346 |
# Convert to DataFrame for easier manipulation
|
347 |
df = pd.DataFrame(monitors)
|
348 |
|
349 |
+
# Filter by county if provided - after getting the monitors
|
350 |
if county_code:
|
351 |
print(f"Filtering by county_code: {county_code}")
|
352 |
county_code_str = str(county_code)
|
|
|
354 |
print(f"After filtering, {len(df)} monitors remain")
|
355 |
|
356 |
if len(df) == 0:
|
357 |
+
return {
|
358 |
+
"map": "No monitoring stations found for the selected county.",
|
359 |
+
"data_html": "",
|
360 |
+
"legend": ""
|
361 |
+
}
|
362 |
|
363 |
# Create a map centered on the mean latitude and longitude
|
364 |
center_lat = df["latitude"].mean()
|
365 |
center_lon = df["longitude"].mean()
|
366 |
|
367 |
+
# Create a map with a specific width and height
|
368 |
+
m = folium.Map(location=[center_lat, center_lon], zoom_start=7, width='100%', height=600)
|
369 |
|
370 |
# Add a marker cluster
|
371 |
marker_cluster = MarkerCluster().add_to(m)
|
372 |
|
373 |
+
# Get latest AQI data
|
|
|
374 |
if EMAIL and API_KEY:
|
|
|
375 |
aqi_results = self.get_latest_aqi(state_code, parameter_code=parameter_code)
|
376 |
+
else:
|
377 |
+
aqi_results = self.mock_get_aqi_data(state_code, county_code, parameter_code)
|
378 |
+
|
379 |
+
# Create a lookup dictionary by site ID
|
380 |
+
aqi_data = {}
|
381 |
+
for item in aqi_results:
|
382 |
+
site_id = f"{item['state_code']}-{item['county_code']}-{item['site_number']}"
|
383 |
+
if site_id not in aqi_data:
|
384 |
+
aqi_data[site_id] = []
|
385 |
+
aqi_data[site_id].append(item)
|
386 |
+
|
387 |
+
# Initialize a list to collect all air quality readings for display in UI
|
388 |
+
all_readings = []
|
389 |
+
|
390 |
+
# Add markers for each monitoring station with minimal popup content
|
391 |
for _, row in df.iterrows():
|
392 |
site_id = f"{row['state_code']}-{row['county_code']}-{row['site_number']}"
|
393 |
|
|
|
396 |
|
397 |
# Get AQI data for this station if available
|
398 |
station_aqi_data = aqi_data.get(site_id, [])
|
|
|
|
|
399 |
|
400 |
+
# Add all readings from this station to the collected data
|
401 |
+
for reading in station_aqi_data:
|
402 |
+
all_readings.append({
|
403 |
+
"site_id": site_id,
|
404 |
+
"site_name": row['local_site_name'],
|
405 |
+
"city": row.get('city_name', 'N/A'),
|
406 |
+
"county": row.get('county_name', 'N/A'),
|
407 |
+
"state": row.get('state_name', 'N/A'),
|
408 |
+
"date": reading.get('date_local', 'N/A'),
|
409 |
+
"pollutant": reading.get('parameter_name', 'N/A'),
|
410 |
+
"aqi": reading.get('aqi', 'N/A'),
|
411 |
+
"category": self.get_aqi_category(reading.get('aqi', 0)) if reading.get('aqi') else 'N/A'
|
412 |
+
})
|
413 |
|
414 |
+
# Set marker color based on latest AQI if available
|
415 |
if station_aqi_data:
|
416 |
# Sort by date (most recent first)
|
417 |
station_aqi_data.sort(key=lambda x: x.get('date_local', ''), reverse=True)
|
|
|
421 |
latest_aqi = station_aqi_data[0].get('aqi')
|
422 |
aqi_category = self.get_aqi_category(latest_aqi)
|
423 |
color = self.aqi_categories.get(aqi_category, "blue")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
424 |
|
425 |
+
# Create simple popup content with just station name and link to data
|
426 |
popup_content = f"""
|
427 |
+
<div>
|
428 |
+
<h4>{row['local_site_name']}</h4>
|
429 |
<p><strong>Site ID:</strong> {site_id}</p>
|
430 |
+
<p>See detailed data in the panel below.</p>
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
</div>
|
432 |
"""
|
433 |
|
434 |
+
# Add marker to cluster with simple popup
|
435 |
+
popup = folium.Popup(popup_content, max_width=300)
|
|
|
|
|
436 |
folium.Marker(
|
437 |
location=[row["latitude"], row["longitude"]],
|
438 |
popup=popup,
|
439 |
icon=folium.Icon(color=color, icon="cloud"),
|
440 |
).add_to(marker_cluster)
|
441 |
|
442 |
+
# Sort all readings by date (most recent first)
|
443 |
+
all_readings.sort(key=lambda x: x.get('date', ''), reverse=True)
|
444 |
+
|
445 |
+
# Convert all readings to HTML table for display in UI
|
446 |
+
data_html = self.create_readings_table_html(all_readings)
|
447 |
+
|
448 |
+
# Return map HTML, data HTML, and legend HTML separately
|
449 |
+
return {
|
450 |
+
"map": m._repr_html_(),
|
451 |
+
"data_html": data_html,
|
452 |
+
"legend": self.create_legend_html()
|
453 |
+
}
|
454 |
+
|
455 |
+
def create_readings_table_html(self, readings):
|
456 |
+
"""Create an HTML table of air quality readings"""
|
457 |
+
if not readings:
|
458 |
+
return "<p>No air quality data available for the selected criteria.</p>"
|
459 |
+
|
460 |
+
html = """
|
461 |
+
<div style="max-height: 500px; overflow-y: auto;">
|
462 |
+
<h3>Air Quality Readings</h3>
|
463 |
+
<table style="width:100%; border-collapse: collapse; margin-top: 10px;">
|
464 |
+
<tr style="background-color: #f2f2f2; position: sticky; top: 0;">
|
465 |
+
<th style="padding: 8px; text-align: left; border: 1px solid #ddd;">Station</th>
|
466 |
+
<th style="padding: 8px; text-align: left; border: 1px solid #ddd;">Location</th>
|
467 |
+
<th style="padding: 8px; text-align: left; border: 1px solid #ddd;">Date</th>
|
468 |
+
<th style="padding: 8px; text-align: left; border: 1px solid #ddd;">Pollutant</th>
|
469 |
+
<th style="padding: 8px; text-align: left; border: 1px solid #ddd;">AQI</th>
|
470 |
+
<th style="padding: 8px; text-align: left; border: 1px solid #ddd;">Category</th>
|
471 |
+
</tr>
|
472 |
+
"""
|
473 |
+
|
474 |
+
for i, reading in enumerate(readings):
|
475 |
+
# Get background color for AQI category
|
476 |
+
category = reading.get('category', 'N/A')
|
477 |
+
bg_color = self.aqi_legend_colors.get(category, "#ffffff")
|
478 |
+
|
479 |
+
# For better readability, use a lighter version of the color
|
480 |
+
if category != 'Good' and category != 'N/A':
|
481 |
+
# Add alpha transparency to the color
|
482 |
+
bg_color = bg_color + "40" # 40 is 25% opacity in hex
|
483 |
+
|
484 |
+
# Alternate row colors for better readability
|
485 |
+
row_style = ' style="background-color: #f9f9f9;"' if i % 2 == 0 else ''
|
486 |
+
|
487 |
+
location = f"{reading.get('city', 'N/A')}, {reading.get('state', 'N/A')}"
|
488 |
+
|
489 |
+
html += f"""
|
490 |
+
<tr{row_style}>
|
491 |
+
<td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{reading.get('site_name', 'N/A')}</td>
|
492 |
+
<td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{location}</td>
|
493 |
+
<td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{reading.get('date', 'N/A')}</td>
|
494 |
+
<td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{reading.get('pollutant', 'N/A')}</td>
|
495 |
+
<td style="padding: 8px; text-align: left; border: 1px solid #ddd;">{reading.get('aqi', 'N/A')}</td>
|
496 |
+
<td style="padding: 8px; text-align: left; border: 1px solid #ddd; background-color: {bg_color};">{category}</td>
|
497 |
+
</tr>
|
498 |
+
"""
|
499 |
|
500 |
+
html += """
|
501 |
+
</table>
|
502 |
+
</div>
|
503 |
+
"""
|
504 |
|
505 |
+
return html
|
506 |
|
507 |
def create_legend_html(self):
|
508 |
"""Create the HTML for the AQI legend"""
|
|
|
524 |
|
525 |
def get_aqi_category(self, aqi_value):
|
526 |
"""Determine AQI category based on value"""
|
527 |
+
try:
|
528 |
+
aqi = int(aqi_value)
|
529 |
+
if aqi <= 50:
|
530 |
+
return "Good"
|
531 |
+
elif aqi <= 100:
|
532 |
+
return "Moderate"
|
533 |
+
elif aqi <= 150:
|
534 |
+
return "Unhealthy for Sensitive Groups"
|
535 |
+
elif aqi <= 200:
|
536 |
+
return "Unhealthy"
|
537 |
+
elif aqi <= 300:
|
538 |
+
return "Very Unhealthy"
|
539 |
+
else:
|
540 |
+
return "Hazardous"
|
541 |
+
except (ValueError, TypeError):
|
542 |
+
return "N/A"
|
543 |
|
544 |
def mock_get_counties(self, state_code):
|
545 |
"""Return mock county data for the specified state"""
|
|
|
572 |
numeric_state_code = state_code_mapping.get(state_code, "01") # Default to "01" if not found
|
573 |
else:
|
574 |
numeric_state_code = state_code
|
575 |
+
|
576 |
# Sample data for California
|
577 |
if state_code == "CA" or numeric_state_code == "06":
|
578 |
monitors = [
|
|
|
588 |
"local_site_name": "Los Angeles - North Main Street",
|
589 |
"address": "1630 North Main Street",
|
590 |
"city_name": "Los Angeles",
|
591 |
+
"county_name": "Los Angeles",
|
592 |
+
"state_name": "California",
|
593 |
"cbsa_name": "Los Angeles-Long Beach-Anaheim",
|
594 |
"date_established": "1998-01-01",
|
595 |
"last_sample_date": "2024-04-10"
|
|
|
606 |
"local_site_name": "Los Angeles - North Main Street",
|
607 |
"address": "1630 North Main Street",
|
608 |
"city_name": "Los Angeles",
|
609 |
+
"county_name": "Los Angeles",
|
610 |
+
"state_name": "California",
|
611 |
"cbsa_name": "Los Angeles-Long Beach-Anaheim",
|
612 |
"date_established": "1998-01-01",
|
613 |
"last_sample_date": "2024-04-10"
|
|
|
624 |
"local_site_name": "Sacramento - T Street",
|
625 |
"address": "1309 T Street",
|
626 |
"city_name": "Sacramento",
|
627 |
+
"county_name": "Sacramento",
|
628 |
+
"state_name": "California",
|
629 |
"cbsa_name": "Sacramento-Roseville",
|
630 |
"date_established": "1999-03-01",
|
631 |
"last_sample_date": "2024-04-10"
|
|
|
642 |
"local_site_name": "San Diego - Beardsley Street",
|
643 |
"address": "1110 Beardsley Street",
|
644 |
"city_name": "San Diego",
|
645 |
+
"county_name": "San Diego",
|
646 |
+
"state_name": "California",
|
647 |
"cbsa_name": "San Diego-Carlsbad",
|
648 |
"date_established": "1999-04-15",
|
649 |
"last_sample_date": "2024-04-10"
|
|
|
664 |
"local_site_name": "New York - PS 59",
|
665 |
"address": "228 East 57th Street",
|
666 |
"city_name": "New York",
|
667 |
+
"county_name": "New York",
|
668 |
+
"state_name": "New York",
|
669 |
"cbsa_name": "New York-Newark-Jersey City",
|
670 |
"date_established": "1999-07-15",
|
671 |
"last_sample_date": "2024-04-10"
|
|
|
682 |
"local_site_name": "New York - IS 52",
|
683 |
"address": "681 Kelly Street",
|
684 |
"city_name": "Bronx",
|
685 |
+
"county_name": "Bronx",
|
686 |
+
"state_name": "New York",
|
687 |
"cbsa_name": "New York-Newark-Jersey City",
|
688 |
"date_established": "1998-01-01",
|
689 |
"last_sample_date": "2024-04-10"
|
|
|
704 |
"local_site_name": "Houston - Clinton Drive",
|
705 |
"address": "9525 Clinton Drive",
|
706 |
"city_name": "Houston",
|
707 |
+
"county_name": "Harris",
|
708 |
+
"state_name": "Texas",
|
709 |
"cbsa_name": "Houston-The Woodlands-Sugar Land",
|
710 |
"date_established": "1997-09-01",
|
711 |
"last_sample_date": "2024-04-10"
|
|
|
722 |
"local_site_name": "Dallas - Hinton Street",
|
723 |
"address": "1415 Hinton Street",
|
724 |
"city_name": "Dallas",
|
725 |
+
"county_name": "Dallas",
|
726 |
+
"state_name": "Texas",
|
727 |
"cbsa_name": "Dallas-Fort Worth-Arlington",
|
728 |
"date_established": "1998-01-01",
|
729 |
"last_sample_date": "2024-04-10"
|
|
|
744 |
"local_site_name": f"{self.states.get(state_code, 'Unknown')} - Station 1",
|
745 |
"address": "123 Main Street",
|
746 |
"city_name": "City 1",
|
747 |
+
"county_name": "County 1",
|
748 |
+
"state_name": self.states.get(state_code, "Unknown"),
|
749 |
"cbsa_name": f"{self.states.get(state_code, 'Unknown')} Metro Area",
|
750 |
"date_established": "2000-01-01",
|
751 |
"last_sample_date": "2024-04-10"
|
|
|
762 |
"local_site_name": f"{self.states.get(state_code, 'Unknown')} - Station 2",
|
763 |
"address": "456 Oak Street",
|
764 |
"city_name": "City 2",
|
765 |
+
"county_name": "County 2",
|
766 |
+
"state_name": self.states.get(state_code, "Unknown"),
|
767 |
"cbsa_name": f"{self.states.get(state_code, 'Unknown')} Metro Area",
|
768 |
"date_established": "2000-01-01",
|
769 |
"last_sample_date": "2024-04-10"
|
|
|
778 |
if parameter_code:
|
779 |
monitors = [m for m in monitors if m["parameter_code"] == parameter_code]
|
780 |
|
781 |
+
return monitors
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|