File size: 39,617 Bytes
b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 b659d55 e95f321 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 |
# Install required packages if missing
import subprocess
import sys
def install_package(package):
try:
__import__(package)
except ImportError:
print(f"Installing {package}...")
subprocess.check_call([sys.executable, "-m", "pip", "install", package])
# Install required packages
required_packages = [
'gradio', 'pandas', 'requests', 'beautifulsoup4',
'plotly', 'folium', 'numpy', 'geopy'
]
for package in required_packages:
install_package(package)
# Now import everything
import gradio as gr
import pandas as pd
import requests
from bs4 import BeautifulSoup
import plotly.express as px
import plotly.graph_objects as go
import folium
from folium.plugins import MarkerCluster, HeatMap
import re
import numpy as np
from urllib.parse import urljoin
import time
import json
import os
from geopy.distance import geodesic
from datetime import datetime, timedelta
import warnings
warnings.filterwarnings('ignore')
# Function to convert degrees, minutes, seconds to decimal degrees
def dms_to_decimal(degrees, minutes, seconds, direction):
decimal = float(degrees) + float(minutes)/60 + float(seconds)/3600
if direction in ['S', 'W', '-']:
decimal = -decimal
return decimal
# Function to parse DMS coordinates from text
def parse_dms_coordinates(text):
if not text:
return None, None
# Clean up the text
text = text.replace('**', '').replace('\n', ' ').strip()
# Look for DMS format
lat_pattern = r'(\d+)Β°\s*(\d+)\'\s*(\d+\.?\d*)\'?\'\s*(?:Latitude|[NS])'
lon_pattern = r'(-?\d+)Β°\s*(\d+)\'\s*(\d+\.?\d*)\'?\'\s*(?:Longitude|[EW])'
lat_match = re.search(lat_pattern, text)
lon_match = re.search(lon_pattern, text)
latitude = None
longitude = None
if lat_match:
lat_deg, lat_min, lat_sec = lat_match.groups()
# Determine direction (N positive, S negative)
lat_dir = 'N'
if 'S' in text:
lat_dir = 'S'
latitude = dms_to_decimal(lat_deg, lat_min, lat_sec, lat_dir)
if lon_match:
lon_deg, lon_min, lon_sec = lon_match.groups()
# Determine direction (E positive, W negative)
lon_dir = 'E'
if 'W' in text or '-' in lon_deg:
lon_dir = 'W'
longitude = dms_to_decimal(lon_deg.replace('-', ''), lon_min, lon_sec, lon_dir)
return latitude, longitude
# Function to fetch NASA FIRMS data
def fetch_firms_data():
"""
Fetch NASA FIRMS VIIRS active fire data for the last 24 hours
Filters for USA only and returns relevant fire hotspot data
"""
firms_url = "https://firms.modaps.eosdis.nasa.gov/data/active_fire/viirs/csv/J1_VIIRS_C2_Global_24h.csv"
try:
print("Fetching NASA FIRMS data...")
response = requests.get(firms_url, timeout=60)
response.raise_for_status()
# Read CSV data
from io import StringIO
firms_df = pd.read_csv(StringIO(response.text))
print(f"Retrieved {len(firms_df)} global fire hotspots")
# Filter for USA coordinates (approximate bounding box)
# Continental US, Alaska, Hawaii
usa_firms = firms_df[
(
# Continental US
((firms_df['latitude'] >= 24.5) & (firms_df['latitude'] <= 49.0) &
(firms_df['longitude'] >= -125.0) & (firms_df['longitude'] <= -66.0)) |
# Alaska
((firms_df['latitude'] >= 54.0) & (firms_df['latitude'] <= 72.0) &
(firms_df['longitude'] >= -180.0) & (firms_df['longitude'] <= -130.0)) |
# Hawaii
((firms_df['latitude'] >= 18.0) & (firms_df['latitude'] <= 23.0) &
(firms_df['longitude'] >= -162.0) & (firms_df['longitude'] <= -154.0))
)
].copy()
print(f"Filtered to {len(usa_firms)} USA fire hotspots")
# Add datetime column for easier processing
usa_firms['datetime'] = pd.to_datetime(usa_firms['acq_date'] + ' ' + usa_firms['acq_time'].astype(str).str.zfill(4),
format='%Y-%m-%d %H%M')
# Sort by acquisition time (most recent first)
usa_firms = usa_firms.sort_values('datetime', ascending=False)
return usa_firms
except Exception as e:
print(f"Error fetching FIRMS data: {e}")
return pd.DataFrame()
# Function to match FIRMS hotspots with InciWeb incidents
def match_firms_to_inciweb(inciweb_df, firms_df, max_distance_km=50):
"""
Match FIRMS hotspots to InciWeb incidents based on geographic proximity
Args:
inciweb_df: DataFrame with InciWeb incident data (must have latitude/longitude)
firms_df: DataFrame with FIRMS hotspot data
max_distance_km: Maximum distance in km to consider a match
Returns:
Enhanced inciweb_df with FIRMS data and activity status
"""
if firms_df.empty or inciweb_df.empty:
return inciweb_df
print(f"Matching {len(firms_df)} FIRMS hotspots to {len(inciweb_df)} InciWeb incidents...")
# Initialize new columns
inciweb_df = inciweb_df.copy()
inciweb_df['firms_hotspots'] = 0
inciweb_df['total_frp'] = 0.0 # Fire Radiative Power
inciweb_df['avg_confidence'] = 0.0
inciweb_df['latest_hotspot'] = None
inciweb_df['is_active'] = False
inciweb_df['hotspot_coords'] = None
inciweb_df['activity_level'] = 'Unknown'
# Only process incidents that have coordinates
incidents_with_coords = inciweb_df[
(inciweb_df['latitude'].notna()) & (inciweb_df['longitude'].notna())
].copy()
print(f"Processing {len(incidents_with_coords)} incidents with coordinates...")
for idx, incident in incidents_with_coords.iterrows():
incident_coords = (incident['latitude'], incident['longitude'])
# Find FIRMS hotspots within the specified distance
hotspot_distances = []
matched_hotspots = []
for _, hotspot in firms_df.iterrows():
hotspot_coords = (hotspot['latitude'], hotspot['longitude'])
try:
distance = geodesic(incident_coords, hotspot_coords).kilometers
if distance <= max_distance_km:
hotspot_distances.append(distance)
matched_hotspots.append(hotspot)
except Exception as e:
continue # Skip invalid coordinates
if matched_hotspots:
matched_df = pd.DataFrame(matched_hotspots)
# Calculate aggregated metrics
num_hotspots = len(matched_hotspots)
total_frp = matched_df['frp'].sum() if 'frp' in matched_df.columns else 0
avg_confidence = matched_df['confidence'].mean() if 'confidence' in matched_df.columns else 0
latest_hotspot = matched_df['datetime'].max() if 'datetime' in matched_df.columns else None
# Determine activity level based on hotspot count and FRP
if num_hotspots >= 20 and total_frp >= 100:
activity_level = 'Very High'
elif num_hotspots >= 10 and total_frp >= 50:
activity_level = 'High'
elif num_hotspots >= 5 and total_frp >= 20:
activity_level = 'Medium'
elif num_hotspots >= 1:
activity_level = 'Low'
else:
activity_level = 'Minimal'
# Update the incident data
inciweb_df.at[idx, 'firms_hotspots'] = num_hotspots
inciweb_df.at[idx, 'total_frp'] = total_frp
inciweb_df.at[idx, 'avg_confidence'] = avg_confidence
inciweb_df.at[idx, 'latest_hotspot'] = latest_hotspot
inciweb_df.at[idx, 'is_active'] = True
inciweb_df.at[idx, 'activity_level'] = activity_level
# Store hotspot coordinates for visualization
hotspot_coords = [(hs['latitude'], hs['longitude'], hs.get('frp', 1))
for hs in matched_hotspots]
inciweb_df.at[idx, 'hotspot_coords'] = hotspot_coords
print(f" {incident['name']}: {num_hotspots} hotspots, {total_frp:.1f} FRP, {activity_level} activity")
# Mark incidents without recent hotspots as potentially inactive
active_count = (inciweb_df['is_active'] == True).sum()
total_with_coords = len(incidents_with_coords)
print(f"Found {active_count} active incidents out of {total_with_coords} with coordinates")
return inciweb_df
# Function to scrape InciWeb data from the accessible view page
def fetch_inciweb_data():
base_url = "https://inciweb.wildfire.gov"
accessible_url = urljoin(base_url, "/accessible-view")
try:
print(f"Fetching data from: {accessible_url}")
response = requests.get(accessible_url, timeout=30)
response.raise_for_status()
except requests.exceptions.RequestException as e:
print(f"Error fetching data from InciWeb: {e}")
return pd.DataFrame()
soup = BeautifulSoup(response.content, "html.parser")
incidents = []
# Find all incident links and process them
incident_links = soup.find_all("a", href=re.compile(r"/incident-information/"))
for link in incident_links:
try:
incident = {}
# Extract incident name and ID from link
incident["name"] = link.text.strip()
incident["link"] = urljoin(base_url, link.get("href"))
incident["id"] = link.get("href").split("/")[-1]
# Navigate through the structure to get incident details
row = link.parent
if row and row.name == "td":
row_cells = row.parent.find_all("td")
# Parse the row cells to extract information
if len(row_cells) >= 5:
incident_type_cell = row_cells[1] if len(row_cells) > 1 else None
if incident_type_cell:
incident["type"] = incident_type_cell.text.strip()
location_cell = row_cells[2] if len(row_cells) > 2 else None
if location_cell:
incident["location"] = location_cell.text.strip()
state_match = re.search(r'([A-Z]{2})', incident["location"])
if state_match:
incident["state"] = state_match.group(1)
else:
state_parts = incident["location"].split(',')
if state_parts:
incident["state"] = state_parts[0].strip()
else:
incident["state"] = None
size_cell = row_cells[3] if len(row_cells) > 3 else None
if size_cell:
size_text = size_cell.text.strip()
size_match = re.search(r'(\d+(?:,\d+)*)', size_text)
if size_match:
incident["size"] = int(size_match.group(1).replace(',', ''))
else:
incident["size"] = None
updated_cell = row_cells[4] if len(row_cells) > 4 else None
if updated_cell:
incident["updated"] = updated_cell.text.strip()
incidents.append(incident)
except Exception as e:
print(f"Error processing incident: {e}")
continue
df = pd.DataFrame(incidents)
# Ensure all expected columns exist
for col in ["size", "type", "location", "state", "updated"]:
if col not in df.columns:
df[col] = None
df["size"] = pd.to_numeric(df["size"], errors="coerce")
print(f"Fetched {len(df)} incidents")
return df
# Enhanced coordinate extraction with multiple methods
def get_incident_coordinates_basic(incident_url):
"""Enhanced coordinate extraction with fallback methods"""
try:
print(f" Fetching coordinates from: {incident_url}")
response = requests.get(incident_url, timeout=20)
response.raise_for_status()
soup = BeautifulSoup(response.content, "html.parser")
# Method 1: Look for meta tags with coordinates
meta_tags = soup.find_all("meta")
for meta in meta_tags:
if meta.get("name") == "geo.position":
coords = meta.get("content", "").split(";")
if len(coords) >= 2:
try:
lat, lon = float(coords[0].strip()), float(coords[1].strip())
print(f" Found coordinates via meta tags: {lat}, {lon}")
return lat, lon
except ValueError:
pass
# Method 2: Look for coordinate table rows
for row in soup.find_all('tr'):
th = row.find('th')
if th and 'Coordinates' in th.get_text(strip=True):
coord_cell = row.find('td')
if coord_cell:
coord_text = coord_cell.get_text(strip=True)
# Try to extract decimal coordinates
lat_match = re.search(r'(-?\d+\.?\d+)', coord_text)
if lat_match:
# Look for longitude after latitude
lon_match = re.search(r'(-?\d+\.?\d+)', coord_text[lat_match.end():])
if lon_match:
try:
lat = float(lat_match.group(1))
lon = float(lon_match.group(1))
print(f" Found coordinates via table: {lat}, {lon}")
return lat, lon
except ValueError:
pass
# Method 3: Look for script tags with map data
script_tags = soup.find_all("script")
for script in script_tags:
if not script.string:
continue
script_text = script.string
# Look for map initialization patterns
if "L.map" in script_text or "leaflet" in script_text.lower():
setview_match = re.search(r'setView\s*\(\s*\[\s*(-?\d+\.?\d*)\s*,\s*(-?\d+\.?\d*)\s*\]',
script_text, re.IGNORECASE)
if setview_match:
lat, lon = float(setview_match.group(1)), float(setview_match.group(2))
print(f" Found coordinates via map script: {lat}, {lon}")
return lat, lon
# Look for direct coordinate assignments
lat_match = re.search(r'(?:lat|latitude)\s*[=:]\s*(-?\d+\.?\d*)', script_text, re.IGNORECASE)
lon_match = re.search(r'(?:lon|lng|longitude)\s*[=:]\s*(-?\d+\.?\d*)', script_text, re.IGNORECASE)
if lat_match and lon_match:
lat, lon = float(lat_match.group(1)), float(lon_match.group(1))
print(f" Found coordinates via script variables: {lat}, {lon}")
return lat, lon
# Method 4: Use predetermined coordinates for known incidents (fallback)
known_coords = get_known_incident_coordinates(incident_url)
if known_coords:
print(f" Using known coordinates: {known_coords}")
return known_coords
print(f" No coordinates found for {incident_url}")
return None, None
except Exception as e:
print(f" Error extracting coordinates from {incident_url}: {e}")
return None, None
def get_known_incident_coordinates(incident_url):
"""Fallback coordinates for some known incident locations"""
# Extract incident name/ID from URL
incident_id = incident_url.split('/')[-1] if incident_url else ""
# Some predetermined coordinates for major fire-prone areas
known_locations = {
# These are approximate coordinates for demonstration
'horse-fire': (42.0, -104.0), # Wyoming
'aggie-creek-fire': (64.0, -153.0), # Alaska
'big-creek-fire': (47.0, -114.0), # Montana
'conner-fire': (39.5, -116.0), # Nevada
'trout-fire': (35.0, -106.0), # New Mexico
'basin-fire': (34.0, -112.0), # Arizona
'rowena-fire': (45.0, -121.0), # Oregon
'post-fire': (44.0, -115.0), # Idaho
}
for key, coords in known_locations.items():
if key in incident_id.lower():
return coords
return None
# Function to get coordinates for a subset of incidents (for demo efficiency)
def add_coordinates_to_incidents(df, max_incidents=30):
"""Add coordinates to incidents with improved success rate"""
df = df.copy()
df['latitude'] = None
df['longitude'] = None
# Prioritize recent wildfires, then other incidents
recent_wildfires = df[
(df['type'].str.contains('Wildfire', na=False)) &
(df['updated'].str.contains('ago|seconds|minutes|hours', na=False))
].head(max_incidents // 2)
other_incidents = df[
~df.index.isin(recent_wildfires.index)
].head(max_incidents // 2)
sample_df = pd.concat([recent_wildfires, other_incidents]).head(max_incidents)
print(f"Getting coordinates for {len(sample_df)} incidents (prioritizing recent wildfires)...")
success_count = 0
for idx, row in sample_df.iterrows():
if pd.notna(row.get("link")):
try:
lat, lon = get_incident_coordinates_basic(row["link"])
if lat is not None and lon is not None:
# Validate coordinates are reasonable for USA
if 18.0 <= lat <= 72.0 and -180.0 <= lon <= -65.0: # USA bounds including Alaska/Hawaii
df.at[idx, 'latitude'] = lat
df.at[idx, 'longitude'] = lon
success_count += 1
print(f" β
{row['name']}: {lat:.4f}, {lon:.4f}")
else:
print(f" β {row['name']}: Invalid coordinates {lat}, {lon}")
else:
print(f" β οΈ {row['name']}: No coordinates found")
# Small delay to avoid overwhelming the server
time.sleep(0.3)
except Exception as e:
print(f" β Error getting coordinates for {row['name']}: {e}")
continue
print(f"Successfully extracted coordinates for {success_count}/{len(sample_df)} incidents")
return df
# Enhanced map generation with FIRMS data
def generate_enhanced_map(df, firms_df):
"""Generate map with both InciWeb incidents and FIRMS hotspots"""
# Create map centered on the US
m = folium.Map(location=[39.8283, -98.5795], zoom_start=4)
# Add FIRMS heat map layer for all USA hotspots (even if no InciWeb coordinates)
if not firms_df.empty:
print(f"Adding {len(firms_df)} FIRMS hotspots to map...")
heat_data = [[row['latitude'], row['longitude'], min(row.get('frp', 1), 100)]
for _, row in firms_df.iterrows()]
if heat_data:
HeatMap(
heat_data,
name="Fire Intensity Heatmap (NASA FIRMS)",
radius=15,
blur=10,
max_zoom=1,
gradient={0.2: 'blue', 0.4: 'lime', 0.6: 'orange', 1: 'red'}
).add_to(m)
# Add some sample FIRMS points as markers
sample_firms = firms_df.head(100) # Show top 100 hotspots as individual markers
for _, hotspot in sample_firms.iterrows():
folium.CircleMarker(
location=[hotspot['latitude'], hotspot['longitude']],
radius=2 + min(hotspot.get('frp', 1) / 10, 8),
popup=f"π₯ FIRMS Hotspot<br>FRP: {hotspot.get('frp', 'N/A')} MW<br>Confidence: {hotspot.get('confidence', 'N/A')}%<br>Time: {hotspot.get('acq_time', 'N/A')}",
color='red',
fillColor='orange',
fillOpacity=0.7,
weight=1
).add_to(m)
# Add incident markers if we have coordinates
incidents_with_coords = df[(df['latitude'].notna()) & (df['longitude'].notna())]
if not incidents_with_coords.empty:
print(f"Adding {len(incidents_with_coords)} InciWeb incidents with coordinates to map...")
# Add incident markers
incident_cluster = MarkerCluster(name="InciWeb Incidents").add_to(m)
# Track statistics
active_incidents = 0
inactive_incidents = 0
for _, row in incidents_with_coords.iterrows():
lat, lon = row['latitude'], row['longitude']
# Determine marker color based on activity and type
if row.get('is_active', False):
active_incidents += 1
activity_level = row.get('activity_level', 'Unknown')
if activity_level == 'Very High':
color = 'red'
icon = 'fire'
elif activity_level == 'High':
color = 'orange'
icon = 'fire'
elif activity_level == 'Medium':
color = 'yellow'
icon = 'fire'
else:
color = 'lightred'
icon = 'fire'
else:
inactive_incidents += 1
color = 'gray'
icon = 'pause'
# Create detailed popup
popup_content = f"""
<div style="width: 300px;">
<h4>{row.get('name', 'Unknown')}</h4>
<b>Type:</b> {row.get('type', 'N/A')}<br>
<b>Location:</b> {row.get('location', 'N/A')}<br>
<b>Size:</b> {row.get('size', 'N/A')} acres<br>
<b>Last Updated:</b> {row.get('updated', 'N/A')}<br>
<hr style="margin: 10px 0;">
<h5>π₯ Fire Activity (NASA FIRMS)</h5>
<b>Status:</b> {'π΄ ACTIVE' if row.get('is_active', False) else 'β« Inactive'}<br>
<b>Activity Level:</b> {row.get('activity_level', 'Unknown')}<br>
<b>Hotspots (24h):</b> {row.get('firms_hotspots', 0)}<br>
<b>Total Fire Power:</b> {row.get('total_frp', 0):.1f} MW<br>
<b>Avg Confidence:</b> {row.get('avg_confidence', 0):.1f}%<br>
<a href="{row.get('link', '#')}" target="_blank">π More Details</a>
</div>
"""
folium.Marker(
location=[lat, lon],
popup=folium.Popup(popup_content, max_width=350),
icon=folium.Icon(color=color, icon=icon, prefix='fa')
).add_to(incident_cluster)
# Add hotspot visualization for active incidents
if row.get('is_active', False) and row.get('hotspot_coords'):
hotspot_coords = row.get('hotspot_coords', [])
if hotspot_coords:
# Add individual hotspot markers (smaller, less intrusive)
for coord in hotspot_coords[:20]: # Limit to 20 hotspots per incident
folium.CircleMarker(
location=[coord[0], coord[1]],
radius=3 + min(coord[2] / 20, 10), # Size based on FRP
popup=f"π₯ Hotspot<br>FRP: {coord[2]:.1f} MW",
color='red',
fillColor='orange',
fillOpacity=0.7
).add_to(m)
else:
print("No InciWeb incidents have coordinates, showing FIRMS data only")
active_incidents = 0
inactive_incidents = len(df)
# Add custom legend
total_hotspots = len(firms_df) if not firms_df.empty else 0
total_incidents = len(df)
legend_html = f'''
<div style="position: fixed;
bottom: 50px; left: 50px; width: 250px; height: 320px;
border:2px solid grey; z-index:9999; font-size:12px;
background-color:white; padding: 10px;
border-radius: 5px; font-family: Arial;">
<div style="font-weight: bold; margin-bottom: 8px; font-size: 14px;">π₯ Wildfire Activity Status</div>
<div style="margin-bottom: 8px;"><b>InciWeb Incidents:</b></div>
<div style="display: flex; align-items: center; margin-bottom: 3px;">
<div style="background-color: red; width: 12px; height: 12px; margin-right: 5px; border-radius: 50%;"></div>
<div>Very High Activity</div>
</div>
<div style="display: flex; align-items: center; margin-bottom: 3px;">
<div style="background-color: orange; width: 12px; height: 12px; margin-right: 5px; border-radius: 50%;"></div>
<div>High Activity</div>
</div>
<div style="display: flex; align-items: center; margin-bottom: 3px;">
<div style="background-color: yellow; width: 12px; height: 12px; margin-right: 5px; border-radius: 50%;"></div>
<div>Medium Activity</div>
</div>
<div style="display: flex; align-items: center; margin-bottom: 3px;">
<div style="background-color: lightcoral; width: 12px; height: 12px; margin-right: 5px; border-radius: 50%;"></div>
<div>Low Activity</div>
</div>
<div style="display: flex; align-items: center; margin-bottom: 8px;">
<div style="background-color: gray; width: 12px; height: 12px; margin-right: 5px; border-radius: 50%;"></div>
<div>Inactive/No Data</div>
</div>
<div style="margin-bottom: 5px;"><b>NASA FIRMS Data:</b></div>
<div style="display: flex; align-items: center; margin-bottom: 3px;">
<div style="background-color: orange; width: 12px; height: 12px; margin-right: 5px; border-radius: 50%;"></div>
<div>Fire Hotspots (24h)</div>
</div>
<div style="margin-bottom: 8px; font-style: italic;">Heat map shows fire intensity</div>
<div style="font-size: 11px; margin-top: 10px; padding-top: 5px; border-top: 1px solid #ccc;">
<b>Statistics:</b><br>
π΄ Active InciWeb: {active_incidents}<br>
β« Inactive InciWeb: {inactive_incidents}<br>
π Total InciWeb: {total_incidents}<br>
π‘οΈ Total FIRMS Hotspots: {total_hotspots}<br>
π Incidents with Coords: {len(incidents_with_coords)}
</div>
</div>
'''
# Add layer control
folium.LayerControl().add_to(m)
# Get map HTML and add legend
map_html = m._repr_html_()
map_with_legend = map_html.replace('</body>', legend_html + '</body>')
return map_with_legend
# Enhanced visualization functions
def generate_enhanced_visualizations(df, firms_df):
"""Generate enhanced visualizations with FIRMS data integration"""
figures = []
if df.empty:
return [px.bar(title="No data available")]
# 1. Activity Status Overview
if 'is_active' in df.columns:
activity_summary = df['is_active'].value_counts().reset_index()
activity_summary.columns = ['is_active', 'count']
activity_summary['status'] = activity_summary['is_active'].map({True: 'Active (FIRMS detected)', False: 'Inactive/Unknown'})
fig1 = px.pie(
activity_summary,
values='count',
names='status',
title="π₯ Wildfire Activity Status (Based on NASA FIRMS Data)",
color_discrete_map={'Active (FIRMS detected)': 'red', 'Inactive/Unknown': 'gray'}
)
fig1.update_traces(textinfo='label+percent+value')
else:
fig1 = px.bar(title="Activity status data not available")
figures.append(fig1)
# 2. Activity Level Distribution
if 'activity_level' in df.columns and df['activity_level'].notna().any():
activity_levels = df[df['activity_level'] != 'Unknown']['activity_level'].value_counts().reset_index()
activity_levels.columns = ['activity_level', 'count']
# Define order and colors
level_order = ['Very High', 'High', 'Medium', 'Low', 'Minimal']
color_map = {'Very High': 'darkred', 'High': 'red', 'Medium': 'orange', 'Low': 'yellow', 'Minimal': 'lightblue'}
fig2 = px.bar(
activity_levels,
x='activity_level',
y='count',
title="π Fire Activity Levels (NASA FIRMS Intensity)",
labels={'activity_level': 'Activity Level', 'count': 'Number of Incidents'},
color='activity_level',
color_discrete_map=color_map,
category_orders={'activity_level': level_order}
)
else:
fig2 = px.bar(title="Activity level data not available")
figures.append(fig2)
# 3. Fire Radiative Power vs Incident Size
if 'total_frp' in df.columns and 'size' in df.columns:
active_df = df[(df['is_active'] == True) & (df['total_frp'] > 0) & (df['size'].notna())].copy()
if not active_df.empty:
fig3 = px.scatter(
active_df,
x='size',
y='total_frp',
size='firms_hotspots',
color='activity_level',
hover_data=['name', 'state', 'firms_hotspots'],
title="π₯ Fire Intensity vs Incident Size (Active Fires Only)",
labels={'size': 'Incident Size (acres)', 'total_frp': 'Total Fire Radiative Power (MW)'},
color_discrete_map={'Very High': 'darkred', 'High': 'red', 'Medium': 'orange', 'Low': 'yellow'}
)
fig3.update_layout(xaxis_type="log", yaxis_type="log")
else:
fig3 = px.bar(title="No active fires with size and intensity data")
else:
fig3 = px.bar(title="Fire intensity vs size data not available")
figures.append(fig3)
# 4. Hotspot Detection Over Time (if FIRMS data available)
if not firms_df.empty and 'datetime' in firms_df.columns:
# Group by hour to show detection pattern
firms_df['hour'] = firms_df['datetime'].dt.floor('H')
hourly_detections = firms_df.groupby('hour').size().reset_index(name='detections')
fig4 = px.line(
hourly_detections,
x='hour',
y='detections',
title="π Fire Hotspot Detections Over Time (Last 24 Hours)",
labels={'hour': 'Time', 'detections': 'Number of Hotspots Detected'}
)
fig4.update_traces(line_color='red')
else:
fig4 = px.bar(title="FIRMS temporal data not available")
figures.append(fig4)
# 5. State-wise Active vs Inactive Breakdown
if 'state' in df.columns and 'is_active' in df.columns:
state_activity = df.groupby(['state', 'is_active']).size().reset_index(name='count')
state_activity['status'] = state_activity['is_active'].map({True: 'Active', False: 'Inactive'})
# Get top 10 states by total incidents
top_states = df['state'].value_counts().head(10).index.tolist()
state_activity_filtered = state_activity[state_activity['state'].isin(top_states)]
if not state_activity_filtered.empty:
fig5 = px.bar(
state_activity_filtered,
x='state',
y='count',
color='status',
title="πΊοΈ Active vs Inactive Incidents by State (Top 10)",
labels={'state': 'State', 'count': 'Number of Incidents'},
color_discrete_map={'Active': 'red', 'Inactive': 'gray'}
)
else:
fig5 = px.bar(title="State activity data not available")
else:
fig5 = px.bar(title="State activity data not available")
figures.append(fig5)
return figures
# Main application function
def create_enhanced_wildfire_app():
"""Create the enhanced Gradio application"""
with gr.Blocks(title="Enhanced InciWeb + NASA FIRMS Wildfire Tracker", theme=gr.themes.Soft()) as app:
gr.Markdown("""
# π₯ Enhanced Wildfire Tracker
## InciWeb Incidents + NASA FIRMS Real-Time Fire Detection
This application combines wildfire incident reports from InciWeb with real-time satellite fire detection data from NASA FIRMS to provide:
- **Active fire status** based on satellite hotspot detection
- **Fire intensity metrics** using Fire Radiative Power (FRP)
- **Real-time hotspot mapping** from the last 24 hours
- **Enhanced situational awareness** for wildfire management
""")
with gr.Row():
fetch_btn = gr.Button("π Fetch Latest Data (InciWeb + NASA FIRMS)", variant="primary", size="lg")
status_text = gr.Textbox(label="Status", interactive=False, value="Ready to fetch data...")
with gr.Tabs():
with gr.TabItem("πΊοΈ Enhanced Map"):
map_display = gr.HTML(label="Interactive Map with Fire Activity")
with gr.TabItem("π Enhanced Analytics"):
with gr.Row():
plot_selector = gr.Dropdown(
choices=[
"Activity Status Overview",
"Fire Activity Levels",
"Intensity vs Size Analysis",
"Hotspot Detection Timeline",
"State Activity Breakdown"
],
label="Select Visualization",
value="Activity Status Overview"
)
plot_display = gr.Plot(label="Enhanced Analytics")
with gr.TabItem("π Data Tables"):
with gr.Tabs():
with gr.TabItem("InciWeb Incidents"):
inciweb_table = gr.Dataframe(label="InciWeb Incidents with FIRMS Integration")
with gr.TabItem("NASA FIRMS Hotspots"):
firms_table = gr.Dataframe(label="NASA FIRMS Fire Hotspots (USA, 24h)")
with gr.TabItem("π Export Data"):
gr.Markdown("### Download Enhanced Dataset")
with gr.Row():
download_csv = gr.File(label="Download Enhanced CSV")
download_geojson = gr.File(label="Download GeoJSON")
# Store data in state
app_state = gr.State({})
def fetch_and_process_data():
"""Main data processing function"""
try:
yield "π‘ Fetching InciWeb incident data...", None, None, None, None, None, None
# Fetch InciWeb data
inciweb_df = fetch_inciweb_data()
if inciweb_df.empty:
yield "β Failed to fetch InciWeb data", None, None, None, None, None, None
return
yield f"β
Found {len(inciweb_df)} InciWeb incidents. Getting coordinates...", None, None, None, None, None, None
# Get coordinates for sample incidents
inciweb_df = add_coordinates_to_incidents(inciweb_df, max_incidents=15)
yield "π°οΈ Fetching NASA FIRMS fire detection data...", None, None, None, None, None, None
# Fetch FIRMS data
firms_df = fetch_firms_data()
if firms_df.empty:
yield "β οΈ FIRMS data unavailable, proceeding with InciWeb only", None, None, inciweb_df, firms_df, None, None
return
yield f"β
Found {len(firms_df)} USA fire hotspots. Matching with incidents...", None, None, None, None, None, None
# Match FIRMS data to InciWeb incidents
enhanced_df = match_firms_to_inciweb(inciweb_df, firms_df)
yield "πΊοΈ Generating enhanced map...", None, None, None, None, None, None
# Generate map and visualizations
map_html = generate_enhanced_map(enhanced_df, firms_df)
plots = generate_enhanced_visualizations(enhanced_df, firms_df)
# Prepare export data - create temporary files
import tempfile
# Create CSV file
csv_file = tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=False)
enhanced_df.to_csv(csv_file.name, index=False)
csv_file.close()
active_count = (enhanced_df.get('is_active', pd.Series([False])) == True).sum()
total_hotspots = len(firms_df)
final_status = f"β
Complete! Found {active_count} active fires with {total_hotspots} total hotspots"
yield (final_status, map_html, plots[0], enhanced_df, firms_df, csv_file.name,
{"inciweb_df": enhanced_df, "firms_df": firms_df, "plots": plots})
except Exception as e:
yield f"β Error: {str(e)}", None, None, None, None, None, None
def update_plot(plot_name, state_data):
"""Update plot based on selection"""
if not state_data or "plots" not in state_data:
return px.bar(title="No data available")
plot_options = [
"Activity Status Overview",
"Fire Activity Levels",
"Intensity vs Size Analysis",
"Hotspot Detection Timeline",
"State Activity Breakdown"
]
try:
plot_index = plot_options.index(plot_name)
return state_data["plots"][plot_index]
except (ValueError, IndexError):
return state_data["plots"][0] if state_data["plots"] else px.bar(title="Plot not available")
# Wire up the interface
fetch_btn.click(
fetch_and_process_data,
outputs=[status_text, map_display, plot_display, inciweb_table, firms_table, download_csv, app_state]
)
plot_selector.change(
update_plot,
inputs=[plot_selector, app_state],
outputs=[plot_display]
)
return app
# Create and launch the application
if __name__ == "__main__":
app = create_enhanced_wildfire_app()
app.launch(share=True, debug=True) |