Update app.py
Browse files
app.py
CHANGED
@@ -85,7 +85,7 @@ def parse_dms_coordinates(text):
|
|
85 |
def fetch_firms_data():
|
86 |
"""
|
87 |
Fetch NASA FIRMS VIIRS active fire data for the last 24 hours
|
88 |
-
Filters for USA only and returns relevant fire hotspot data
|
89 |
"""
|
90 |
firms_url = "https://firms.modaps.eosdis.nasa.gov/data/active_fire/viirs/csv/J1_VIIRS_C2_Global_24h.csv"
|
91 |
|
@@ -118,12 +118,36 @@ def fetch_firms_data():
|
|
118 |
|
119 |
print(f"Filtered to {len(usa_firms)} USA fire hotspots")
|
120 |
|
121 |
-
#
|
122 |
-
|
123 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
124 |
|
125 |
-
#
|
126 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
return usa_firms
|
129 |
|
@@ -135,7 +159,7 @@ def fetch_firms_data():
|
|
135 |
def match_firms_to_inciweb(inciweb_df, firms_df, max_distance_km=50):
|
136 |
"""
|
137 |
Match FIRMS hotspots to InciWeb incidents based on geographic proximity
|
138 |
-
Enhanced with better error handling
|
139 |
"""
|
140 |
if firms_df.empty or inciweb_df.empty:
|
141 |
print("Warning: Empty dataframes passed to matching function")
|
@@ -163,31 +187,46 @@ def match_firms_to_inciweb(inciweb_df, firms_df, max_distance_km=50):
|
|
163 |
|
164 |
for idx, incident in incidents_with_coords.iterrows():
|
165 |
try:
|
166 |
-
incident_coords = (incident['latitude'], incident['longitude'])
|
167 |
|
168 |
# Find FIRMS hotspots within the specified distance
|
169 |
-
hotspot_distances = []
|
170 |
matched_hotspots = []
|
171 |
|
172 |
for _, hotspot in firms_df.iterrows():
|
173 |
try:
|
174 |
-
|
|
|
|
|
|
|
175 |
distance = geodesic(incident_coords, hotspot_coords).kilometers
|
176 |
|
177 |
if distance <= max_distance_km:
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
|
183 |
if matched_hotspots:
|
184 |
-
matched_df = pd.DataFrame(matched_hotspots)
|
185 |
-
|
186 |
# Calculate aggregated metrics safely
|
187 |
num_hotspots = len(matched_hotspots)
|
188 |
-
total_frp =
|
189 |
-
avg_confidence =
|
190 |
-
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
# Determine activity level based on hotspot count and FRP
|
193 |
if num_hotspots >= 20 and total_frp >= 100:
|
@@ -209,10 +248,10 @@ def match_firms_to_inciweb(inciweb_df, firms_df, max_distance_km=50):
|
|
209 |
inciweb_df.at[idx, 'is_active'] = True
|
210 |
inciweb_df.at[idx, 'activity_level'] = activity_level
|
211 |
|
212 |
-
# Store hotspot coordinates for visualization
|
213 |
-
|
214 |
-
|
215 |
-
inciweb_df.at[idx, 'hotspot_coords'] =
|
216 |
|
217 |
print(f" {incident['name']}: {num_hotspots} hotspots, {total_frp:.1f} FRP, {activity_level} activity")
|
218 |
|
@@ -220,7 +259,7 @@ def match_firms_to_inciweb(inciweb_df, firms_df, max_distance_km=50):
|
|
220 |
print(f" Error processing incident {incident.get('name', 'Unknown')}: {e}")
|
221 |
continue
|
222 |
|
223 |
-
#
|
224 |
active_count = (inciweb_df['is_active'] == True).sum()
|
225 |
total_with_coords = len(incidents_with_coords)
|
226 |
|
@@ -230,14 +269,20 @@ def match_firms_to_inciweb(inciweb_df, firms_df, max_distance_km=50):
|
|
230 |
|
231 |
except Exception as e:
|
232 |
print(f"Error in match_firms_to_inciweb: {e}")
|
233 |
-
# Return original dataframe with safety columns
|
234 |
-
inciweb_df
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
241 |
return inciweb_df
|
242 |
|
243 |
# Function to scrape InciWeb data from the accessible view page
|
|
|
85 |
def fetch_firms_data():
|
86 |
"""
|
87 |
Fetch NASA FIRMS VIIRS active fire data for the last 24 hours
|
88 |
+
Filters for USA only and returns relevant fire hotspot data with cleaned numeric fields
|
89 |
"""
|
90 |
firms_url = "https://firms.modaps.eosdis.nasa.gov/data/active_fire/viirs/csv/J1_VIIRS_C2_Global_24h.csv"
|
91 |
|
|
|
118 |
|
119 |
print(f"Filtered to {len(usa_firms)} USA fire hotspots")
|
120 |
|
121 |
+
# Clean numeric columns to handle "nominal" values
|
122 |
+
if 'frp' in usa_firms.columns:
|
123 |
+
# Clean FRP column
|
124 |
+
usa_firms['frp'] = usa_firms['frp'].astype(str).str.replace('nominal', '', regex=False)
|
125 |
+
usa_firms['frp'] = usa_firms['frp'].str.replace(r'[^\d\.]', '', regex=True) # Keep only digits and decimals
|
126 |
+
usa_firms['frp'] = usa_firms['frp'].replace('', '0') # Replace empty strings with 0
|
127 |
+
usa_firms['frp'] = pd.to_numeric(usa_firms['frp'], errors='coerce').fillna(0)
|
128 |
+
print(f"Cleaned FRP column, mean FRP: {usa_firms['frp'].mean():.2f}")
|
129 |
+
|
130 |
+
if 'confidence' in usa_firms.columns:
|
131 |
+
# Clean confidence column
|
132 |
+
usa_firms['confidence'] = usa_firms['confidence'].astype(str).str.replace('nominal', '', regex=False)
|
133 |
+
usa_firms['confidence'] = usa_firms['confidence'].str.replace(r'[^\d\.]', '', regex=True)
|
134 |
+
usa_firms['confidence'] = usa_firms['confidence'].replace('', '50') # Default confidence
|
135 |
+
usa_firms['confidence'] = pd.to_numeric(usa_firms['confidence'], errors='coerce').fillna(50)
|
136 |
+
print(f"Cleaned confidence column, mean confidence: {usa_firms['confidence'].mean():.2f}")
|
137 |
|
138 |
+
# Add datetime column for easier processing
|
139 |
+
if 'acq_date' in usa_firms.columns and 'acq_time' in usa_firms.columns:
|
140 |
+
try:
|
141 |
+
usa_firms['datetime'] = pd.to_datetime(
|
142 |
+
usa_firms['acq_date'] + ' ' + usa_firms['acq_time'].astype(str).str.zfill(4),
|
143 |
+
format='%Y-%m-%d %H%M',
|
144 |
+
errors='coerce'
|
145 |
+
)
|
146 |
+
# Sort by acquisition time (most recent first)
|
147 |
+
usa_firms = usa_firms.sort_values('datetime', ascending=False)
|
148 |
+
print(f"Added datetime column, latest detection: {usa_firms['datetime'].max()}")
|
149 |
+
except Exception as e:
|
150 |
+
print(f"Warning: Could not create datetime column: {e}")
|
151 |
|
152 |
return usa_firms
|
153 |
|
|
|
159 |
def match_firms_to_inciweb(inciweb_df, firms_df, max_distance_km=50):
|
160 |
"""
|
161 |
Match FIRMS hotspots to InciWeb incidents based on geographic proximity
|
162 |
+
Enhanced with better error handling and data cleaning
|
163 |
"""
|
164 |
if firms_df.empty or inciweb_df.empty:
|
165 |
print("Warning: Empty dataframes passed to matching function")
|
|
|
187 |
|
188 |
for idx, incident in incidents_with_coords.iterrows():
|
189 |
try:
|
190 |
+
incident_coords = (float(incident['latitude']), float(incident['longitude']))
|
191 |
|
192 |
# Find FIRMS hotspots within the specified distance
|
|
|
193 |
matched_hotspots = []
|
194 |
|
195 |
for _, hotspot in firms_df.iterrows():
|
196 |
try:
|
197 |
+
hotspot_lat = float(hotspot['latitude'])
|
198 |
+
hotspot_lon = float(hotspot['longitude'])
|
199 |
+
hotspot_coords = (hotspot_lat, hotspot_lon)
|
200 |
+
|
201 |
distance = geodesic(incident_coords, hotspot_coords).kilometers
|
202 |
|
203 |
if distance <= max_distance_km:
|
204 |
+
# Create a clean hotspot record with safe conversions
|
205 |
+
clean_hotspot = {
|
206 |
+
'latitude': hotspot_lat,
|
207 |
+
'longitude': hotspot_lon,
|
208 |
+
'frp': float(hotspot.get('frp', 0)) if pd.notna(hotspot.get('frp')) else 0.0,
|
209 |
+
'confidence': float(hotspot.get('confidence', 50)) if pd.notna(hotspot.get('confidence')) else 50.0,
|
210 |
+
'datetime': hotspot.get('datetime', None),
|
211 |
+
'distance': distance
|
212 |
+
}
|
213 |
+
matched_hotspots.append(clean_hotspot)
|
214 |
+
|
215 |
+
except (ValueError, TypeError, KeyError) as e:
|
216 |
+
# Skip invalid hotspot data
|
217 |
+
continue
|
218 |
|
219 |
if matched_hotspots:
|
|
|
|
|
220 |
# Calculate aggregated metrics safely
|
221 |
num_hotspots = len(matched_hotspots)
|
222 |
+
total_frp = sum(hs['frp'] for hs in matched_hotspots)
|
223 |
+
avg_confidence = sum(hs['confidence'] for hs in matched_hotspots) / num_hotspots if num_hotspots > 0 else 0.0
|
224 |
+
|
225 |
+
# Get latest hotspot time
|
226 |
+
latest_hotspot = None
|
227 |
+
hotspot_times = [hs['datetime'] for hs in matched_hotspots if hs['datetime'] is not None]
|
228 |
+
if hotspot_times:
|
229 |
+
latest_hotspot = max(hotspot_times)
|
230 |
|
231 |
# Determine activity level based on hotspot count and FRP
|
232 |
if num_hotspots >= 20 and total_frp >= 100:
|
|
|
248 |
inciweb_df.at[idx, 'is_active'] = True
|
249 |
inciweb_df.at[idx, 'activity_level'] = activity_level
|
250 |
|
251 |
+
# Store simplified hotspot coordinates for visualization
|
252 |
+
hotspot_coords_str = str([(hs['latitude'], hs['longitude'], hs['frp'])
|
253 |
+
for hs in matched_hotspots[:10]]) # Limit to 10 for performance
|
254 |
+
inciweb_df.at[idx, 'hotspot_coords'] = hotspot_coords_str
|
255 |
|
256 |
print(f" {incident['name']}: {num_hotspots} hotspots, {total_frp:.1f} FRP, {activity_level} activity")
|
257 |
|
|
|
259 |
print(f" Error processing incident {incident.get('name', 'Unknown')}: {e}")
|
260 |
continue
|
261 |
|
262 |
+
# Calculate final statistics
|
263 |
active_count = (inciweb_df['is_active'] == True).sum()
|
264 |
total_with_coords = len(incidents_with_coords)
|
265 |
|
|
|
269 |
|
270 |
except Exception as e:
|
271 |
print(f"Error in match_firms_to_inciweb: {e}")
|
272 |
+
# Return original dataframe with safety columns if matching completely fails
|
273 |
+
inciweb_df = inciweb_df.copy()
|
274 |
+
for col in ['firms_hotspots', 'total_frp', 'avg_confidence', 'latest_hotspot', 'is_active', 'hotspot_coords', 'activity_level']:
|
275 |
+
if col not in inciweb_df.columns:
|
276 |
+
if col in ['firms_hotspots']:
|
277 |
+
inciweb_df[col] = 0
|
278 |
+
elif col in ['total_frp', 'avg_confidence']:
|
279 |
+
inciweb_df[col] = 0.0
|
280 |
+
elif col in ['is_active']:
|
281 |
+
inciweb_df[col] = False
|
282 |
+
elif col in ['activity_level']:
|
283 |
+
inciweb_df[col] = 'Unknown'
|
284 |
+
else:
|
285 |
+
inciweb_df[col] = None
|
286 |
return inciweb_df
|
287 |
|
288 |
# Function to scrape InciWeb data from the accessible view page
|