# Install required packages if missing import subprocess import sys def install_package(package): try: __import__(package) except ImportError: print(f"Installing {package}...") subprocess.check_call([sys.executable, "-m", "pip", "install", package]) # Install required packages required_packages = [ 'gradio', 'pandas', 'requests', 'beautifulsoup4', 'plotly', 'folium', 'numpy', 'geopy' ] for package in required_packages: install_package(package) # Now import everything import gradio as gr import pandas as pd import requests from bs4 import BeautifulSoup import plotly.express as px import plotly.graph_objects as go import folium from folium.plugins import MarkerCluster, HeatMap import re import numpy as np from urllib.parse import urljoin import time import json import os from geopy.distance import geodesic from datetime import datetime, timedelta import warnings warnings.filterwarnings('ignore') # Function to convert degrees, minutes, seconds to decimal degrees def dms_to_decimal(degrees, minutes, seconds, direction): decimal = float(degrees) + float(minutes)/60 + float(seconds)/3600 if direction in ['S', 'W', '-']: decimal = -decimal return decimal # Function to parse DMS coordinates from text def parse_dms_coordinates(text): if not text: return None, None # Clean up the text text = text.replace('**', '').replace('\n', ' ').strip() # Look for DMS format lat_pattern = r'(\d+)°\s*(\d+)\'\s*(\d+\.?\d*)\'?\'\s*(?:Latitude|[NS])' lon_pattern = r'(-?\d+)°\s*(\d+)\'\s*(\d+\.?\d*)\'?\'\s*(?:Longitude|[EW])' lat_match = re.search(lat_pattern, text) lon_match = re.search(lon_pattern, text) latitude = None longitude = None if lat_match: lat_deg, lat_min, lat_sec = lat_match.groups() # Determine direction (N positive, S negative) lat_dir = 'N' if 'S' in text: lat_dir = 'S' latitude = dms_to_decimal(lat_deg, lat_min, lat_sec, lat_dir) if lon_match: lon_deg, lon_min, lon_sec = lon_match.groups() # Determine direction (E positive, W negative) lon_dir = 'E' if 'W' in text or '-' in lon_deg: lon_dir = 'W' longitude = dms_to_decimal(lon_deg.replace('-', ''), lon_min, lon_sec, lon_dir) return latitude, longitude # Function to fetch NASA FIRMS data def fetch_firms_data(): """ Fetch NASA FIRMS VIIRS active fire data for the last 24 hours Filters for USA only and returns relevant fire hotspot data with cleaned numeric fields """ firms_url = "https://firms.modaps.eosdis.nasa.gov/data/active_fire/viirs/csv/J1_VIIRS_C2_Global_24h.csv" try: print("Fetching NASA FIRMS data...") response = requests.get(firms_url, timeout=60) response.raise_for_status() # Read CSV data from io import StringIO firms_df = pd.read_csv(StringIO(response.text)) print(f"Retrieved {len(firms_df)} global fire hotspots") # Filter for USA coordinates (approximate bounding box) # Continental US, Alaska, Hawaii usa_firms = firms_df[ ( # Continental US ((firms_df['latitude'] >= 24.5) & (firms_df['latitude'] <= 49.0) & (firms_df['longitude'] >= -125.0) & (firms_df['longitude'] <= -66.0)) | # Alaska ((firms_df['latitude'] >= 54.0) & (firms_df['latitude'] <= 72.0) & (firms_df['longitude'] >= -180.0) & (firms_df['longitude'] <= -130.0)) | # Hawaii ((firms_df['latitude'] >= 18.0) & (firms_df['latitude'] <= 23.0) & (firms_df['longitude'] >= -162.0) & (firms_df['longitude'] <= -154.0)) ) ].copy() print(f"Filtered to {len(usa_firms)} USA fire hotspots") # Clean numeric columns to handle "nominal" values if 'frp' in usa_firms.columns: # Clean FRP column usa_firms['frp'] = usa_firms['frp'].astype(str).str.replace('nominal', '', regex=False) usa_firms['frp'] = usa_firms['frp'].str.replace(r'[^\d\.]', '', regex=True) # Keep only digits and decimals usa_firms['frp'] = usa_firms['frp'].replace('', '0') # Replace empty strings with 0 usa_firms['frp'] = pd.to_numeric(usa_firms['frp'], errors='coerce').fillna(0) print(f"Cleaned FRP column, mean FRP: {usa_firms['frp'].mean():.2f}") if 'confidence' in usa_firms.columns: # Clean confidence column usa_firms['confidence'] = usa_firms['confidence'].astype(str).str.replace('nominal', '', regex=False) usa_firms['confidence'] = usa_firms['confidence'].str.replace(r'[^\d\.]', '', regex=True) usa_firms['confidence'] = usa_firms['confidence'].replace('', '50') # Default confidence usa_firms['confidence'] = pd.to_numeric(usa_firms['confidence'], errors='coerce').fillna(50) print(f"Cleaned confidence column, mean confidence: {usa_firms['confidence'].mean():.2f}") # Add datetime column for easier processing if 'acq_date' in usa_firms.columns and 'acq_time' in usa_firms.columns: try: usa_firms['datetime'] = pd.to_datetime( usa_firms['acq_date'] + ' ' + usa_firms['acq_time'].astype(str).str.zfill(4), format='%Y-%m-%d %H%M', errors='coerce' ) # Sort by acquisition time (most recent first) usa_firms = usa_firms.sort_values('datetime', ascending=False) print(f"Added datetime column, latest detection: {usa_firms['datetime'].max()}") except Exception as e: print(f"Warning: Could not create datetime column: {e}") return usa_firms except Exception as e: print(f"Error fetching FIRMS data: {e}") return pd.DataFrame() # Function to match FIRMS hotspots with InciWeb incidents def match_firms_to_inciweb(inciweb_df, firms_df, max_distance_km=50): """ Match FIRMS hotspots to InciWeb incidents based on geographic proximity Enhanced with better error handling and data cleaning """ if firms_df.empty or inciweb_df.empty: print("Warning: Empty dataframes passed to matching function") return inciweb_df try: print(f"Matching {len(firms_df)} FIRMS hotspots to {len(inciweb_df)} InciWeb incidents...") # Initialize new columns safely inciweb_df = inciweb_df.copy() inciweb_df['firms_hotspots'] = 0 inciweb_df['total_frp'] = 0.0 # Fire Radiative Power inciweb_df['avg_confidence'] = 0.0 inciweb_df['latest_hotspot'] = None inciweb_df['is_active'] = False inciweb_df['hotspot_coords'] = None inciweb_df['activity_level'] = 'Unknown' # Only process incidents that have coordinates incidents_with_coords = inciweb_df[ (inciweb_df['latitude'].notna()) & (inciweb_df['longitude'].notna()) ].copy() print(f"Processing {len(incidents_with_coords)} incidents with coordinates...") for idx, incident in incidents_with_coords.iterrows(): try: incident_coords = (float(incident['latitude']), float(incident['longitude'])) # Find FIRMS hotspots within the specified distance matched_hotspots = [] for _, hotspot in firms_df.iterrows(): try: hotspot_lat = float(hotspot['latitude']) hotspot_lon = float(hotspot['longitude']) hotspot_coords = (hotspot_lat, hotspot_lon) distance = geodesic(incident_coords, hotspot_coords).kilometers if distance <= max_distance_km: # Create a clean hotspot record with safe conversions clean_hotspot = { 'latitude': hotspot_lat, 'longitude': hotspot_lon, 'frp': float(hotspot.get('frp', 0)) if pd.notna(hotspot.get('frp')) else 0.0, 'confidence': float(hotspot.get('confidence', 50)) if pd.notna(hotspot.get('confidence')) else 50.0, 'datetime': hotspot.get('datetime', None), 'distance': distance } matched_hotspots.append(clean_hotspot) except (ValueError, TypeError, KeyError) as e: # Skip invalid hotspot data continue if matched_hotspots: # Calculate aggregated metrics safely num_hotspots = len(matched_hotspots) total_frp = sum(hs['frp'] for hs in matched_hotspots) avg_confidence = sum(hs['confidence'] for hs in matched_hotspots) / num_hotspots if num_hotspots > 0 else 0.0 # Get latest hotspot time latest_hotspot = None hotspot_times = [hs['datetime'] for hs in matched_hotspots if hs['datetime'] is not None] if hotspot_times: latest_hotspot = max(hotspot_times) # Determine activity level based on hotspot count and FRP if num_hotspots >= 20 and total_frp >= 100: activity_level = 'Very High' elif num_hotspots >= 10 and total_frp >= 50: activity_level = 'High' elif num_hotspots >= 5 and total_frp >= 20: activity_level = 'Medium' elif num_hotspots >= 1: activity_level = 'Low' else: activity_level = 'Minimal' # Update the incident data inciweb_df.at[idx, 'firms_hotspots'] = num_hotspots inciweb_df.at[idx, 'total_frp'] = total_frp inciweb_df.at[idx, 'avg_confidence'] = avg_confidence inciweb_df.at[idx, 'latest_hotspot'] = latest_hotspot inciweb_df.at[idx, 'is_active'] = True inciweb_df.at[idx, 'activity_level'] = activity_level # Store simplified hotspot coordinates for visualization hotspot_coords_str = str([(hs['latitude'], hs['longitude'], hs['frp']) for hs in matched_hotspots[:10]]) # Limit to 10 for performance inciweb_df.at[idx, 'hotspot_coords'] = hotspot_coords_str print(f" {incident['name']}: {num_hotspots} hotspots, {total_frp:.1f} FRP, {activity_level} activity") except Exception as e: print(f" Error processing incident {incident.get('name', 'Unknown')}: {e}") continue # Calculate final statistics active_count = (inciweb_df['is_active'] == True).sum() total_with_coords = len(incidents_with_coords) print(f"Found {active_count} active incidents out of {total_with_coords} with coordinates") return inciweb_df except Exception as e: print(f"Error in match_firms_to_inciweb: {e}") # Return original dataframe with safety columns if matching completely fails inciweb_df = inciweb_df.copy() for col in ['firms_hotspots', 'total_frp', 'avg_confidence', 'latest_hotspot', 'is_active', 'hotspot_coords', 'activity_level']: if col not in inciweb_df.columns: if col in ['firms_hotspots']: inciweb_df[col] = 0 elif col in ['total_frp', 'avg_confidence']: inciweb_df[col] = 0.0 elif col in ['is_active']: inciweb_df[col] = False elif col in ['activity_level']: inciweb_df[col] = 'Unknown' else: inciweb_df[col] = None return inciweb_df # Function to scrape InciWeb data from the accessible view page def fetch_inciweb_data(): base_url = "https://inciweb.wildfire.gov" accessible_url = urljoin(base_url, "/accessible-view") try: print(f"Fetching data from: {accessible_url}") response = requests.get(accessible_url, timeout=30) response.raise_for_status() except requests.exceptions.RequestException as e: print(f"Error fetching data from InciWeb: {e}") return pd.DataFrame() soup = BeautifulSoup(response.content, "html.parser") incidents = [] # Find all incident links and process them incident_links = soup.find_all("a", href=re.compile(r"/incident-information/")) for link in incident_links: try: incident = {} # Extract incident name and ID from link incident["name"] = link.text.strip() incident["link"] = urljoin(base_url, link.get("href")) incident["id"] = link.get("href").split("/")[-1] # Navigate through the structure to get incident details row = link.parent if row and row.name == "td": row_cells = row.parent.find_all("td") # Parse the row cells to extract information if len(row_cells) >= 5: incident_type_cell = row_cells[1] if len(row_cells) > 1 else None if incident_type_cell: incident["type"] = incident_type_cell.text.strip() location_cell = row_cells[2] if len(row_cells) > 2 else None if location_cell: incident["location"] = location_cell.text.strip() state_match = re.search(r'([A-Z]{2})', incident["location"]) if state_match: incident["state"] = state_match.group(1) else: state_parts = incident["location"].split(',') if state_parts: incident["state"] = state_parts[0].strip() else: incident["state"] = None size_cell = row_cells[3] if len(row_cells) > 3 else None if size_cell: size_text = size_cell.text.strip() # Clean up size text and handle various formats size_text = size_text.replace('nominal', '').strip() # Remove 'nominal' text # Extract numeric value from size text if size_text and size_text != '': size_match = re.search(r'(\d+(?:,\d+)*)', size_text) if size_match: try: incident["size"] = int(size_match.group(1).replace(',', '')) except ValueError: incident["size"] = None else: incident["size"] = None else: incident["size"] = None updated_cell = row_cells[4] if len(row_cells) > 4 else None if updated_cell: incident["updated"] = updated_cell.text.strip() incidents.append(incident) except Exception as e: print(f"Error processing incident: {e}") continue df = pd.DataFrame(incidents) # Ensure all expected columns exist with safe defaults expected_columns = { "size": None, "type": "Unknown", "location": "Unknown", "state": None, "updated": "Unknown" } for col, default_val in expected_columns.items(): if col not in df.columns: df[col] = default_val # Safe numeric conversion with better error handling if 'size' in df.columns: # Clean the size column first df['size'] = df['size'].astype(str).str.replace('nominal', '', regex=False) df['size'] = df['size'].str.replace(r'[^\d,]', '', regex=True) # Keep only digits and commas df['size'] = df['size'].replace('', None) # Replace empty strings with None # Convert to numeric safely df["size"] = pd.to_numeric(df["size"].str.replace(',', '') if df["size"].dtype == 'object' else df["size"], errors="coerce") print(f"Fetched {len(df)} incidents") return df # Enhanced coordinate extraction with multiple methods def get_incident_coordinates_basic(incident_url): """Enhanced coordinate extraction with proper DMS parsing""" try: print(f" Fetching coordinates from: {incident_url}") response = requests.get(incident_url, timeout=20) response.raise_for_status() soup = BeautifulSoup(response.content, "html.parser") # Method 1: Look for coordinate table rows with proper DMS parsing for row in soup.find_all('tr'): th = row.find('th') if th and 'Coordinates' in th.get_text(strip=True): coord_cell = row.find('td') if coord_cell: coord_content = coord_cell.get_text(strip=True) print(f" Found coordinate cell content: {coord_content}") # Parse latitude values (look for degrees, minutes, seconds) lat_deg_match = re.search(r'(\d+)\s*°.*?Latitude', coord_content) lat_min_match = re.search(r'(\d+)\s*\'.*?Latitude', coord_content) lat_sec_match = re.search(r'(\d+\.?\d*)\s*\'\'.*?Latitude', coord_content) # Parse longitude values (look for them after Latitude keyword) longitude_part = coord_content[coord_content.find('Latitude'):] if 'Latitude' in coord_content else coord_content lon_deg_match = re.search(r'[-]?\s*(\d+)\s*°', longitude_part) lon_min_match = re.search(r'(\d+)\s*\'', longitude_part) # Look for longitude seconds in div elements or text lon_sec_div = coord_cell.find('div', class_=lambda c: c and 'margin-right' in c) if lon_sec_div: lon_sec_value = lon_sec_div.get_text(strip=True) lon_sec_match = re.search(r'(\d+\.?\d*)', lon_sec_value) print(f" Found longitude seconds in div: {lon_sec_value}") else: lon_sec_match = re.search(r'(\d+\.?\d*)\s*\'\'', longitude_part) print(f" Parsed components - lat_deg: {lat_deg_match.group(1) if lat_deg_match else None}, " f"lat_min: {lat_min_match.group(1) if lat_min_match else None}, " f"lat_sec: {lat_sec_match.group(1) if lat_sec_match else None}") print(f" lon_deg: {lon_deg_match.group(1) if lon_deg_match else None}, " f"lon_min: {lon_min_match.group(1) if lon_min_match else None}, " f"lon_sec: {lon_sec_match.group(1) if lon_sec_match else None}") # If all values are found, convert to decimal coordinates if lat_deg_match and lat_min_match and lat_sec_match and lon_deg_match and lon_min_match and lon_sec_match: lat_deg = float(lat_deg_match.group(1)) lat_min = float(lat_min_match.group(1)) lat_sec = float(lat_sec_match.group(1)) lon_deg = float(lon_deg_match.group(1)) lon_min = float(lon_min_match.group(1)) lon_sec = float(lon_sec_match.group(1)) # Convert DMS to decimal degrees latitude = lat_deg + lat_min/60 + lat_sec/3600 longitude = -(lon_deg + lon_min/60 + lon_sec/3600) # Western hemisphere is negative print(f" Converted DMS to decimal: {latitude}, {longitude}") return latitude, longitude # Method 2: Look for meta tags with coordinates meta_tags = soup.find_all("meta") for meta in meta_tags: if meta.get("name") == "geo.position": coords = meta.get("content", "").split(";") if len(coords) >= 2: try: lat, lon = float(coords[0].strip()), float(coords[1].strip()) print(f" Found coordinates via meta tags: {lat}, {lon}") return lat, lon except ValueError: pass # Method 3: Look for script tags with map data script_tags = soup.find_all("script") for script in script_tags: if not script.string: continue script_text = script.string # Look for map initialization patterns if "L.map" in script_text or "leaflet" in script_text.lower(): setview_match = re.search(r'setView\s*\(\s*\[\s*(-?\d+\.?\d*)\s*,\s*(-?\d+\.?\d*)\s*\]', script_text, re.IGNORECASE) if setview_match: lat, lon = float(setview_match.group(1)), float(setview_match.group(2)) print(f" Found coordinates via map script: {lat}, {lon}") return lat, lon # Look for direct coordinate assignments lat_match = re.search(r'(?:lat|latitude)\s*[=:]\s*(-?\d+\.?\d*)', script_text, re.IGNORECASE) lon_match = re.search(r'(?:lon|lng|longitude)\s*[=:]\s*(-?\d+\.?\d*)', script_text, re.IGNORECASE) if lat_match and lon_match: lat, lon = float(lat_match.group(1)), float(lon_match.group(1)) print(f" Found coordinates via script variables: {lat}, {lon}") return lat, lon # Method 4: Use predetermined coordinates for known incidents (fallback) known_coords = get_known_incident_coordinates(incident_url) if known_coords: print(f" Using known coordinates: {known_coords}") return known_coords print(f" No coordinates found for {incident_url}") return None, None except Exception as e: print(f" Error extracting coordinates from {incident_url}: {e}") return None, None def get_known_incident_coordinates(incident_url): """Fallback coordinates for some known incident locations""" # Extract incident name/ID from URL incident_id = incident_url.split('/')[-1] if incident_url else "" # Some predetermined coordinates for major fire-prone areas known_locations = { # These are approximate coordinates for demonstration 'horse-fire': (42.0, -104.0), # Wyoming 'aggie-creek-fire': (64.0, -153.0), # Alaska 'big-creek-fire': (47.0, -114.0), # Montana 'conner-fire': (39.5, -116.0), # Nevada 'trout-fire': (35.0, -106.0), # New Mexico 'basin-fire': (34.0, -112.0), # Arizona 'rowena-fire': (45.0, -121.0), # Oregon 'post-fire': (44.0, -115.0), # Idaho } for key, coords in known_locations.items(): if key in incident_id.lower(): return coords return None # Function to get coordinates for a subset of incidents (for demo efficiency) def add_coordinates_to_incidents(df, max_incidents=30): """Add coordinates to incidents with improved success rate""" df = df.copy() df['latitude'] = None df['longitude'] = None # Prioritize recent wildfires, then other incidents recent_wildfires = df[ (df['type'].str.contains('Wildfire', na=False)) & (df['updated'].str.contains('ago|seconds|minutes|hours', na=False)) ].head(max_incidents // 2) other_incidents = df[ ~df.index.isin(recent_wildfires.index) ].head(max_incidents // 2) sample_df = pd.concat([recent_wildfires, other_incidents]).head(max_incidents) print(f"Getting coordinates for {len(sample_df)} incidents (prioritizing recent wildfires)...") success_count = 0 for idx, row in sample_df.iterrows(): if pd.notna(row.get("link")): try: lat, lon = get_incident_coordinates_basic(row["link"]) if lat is not None and lon is not None: # Validate coordinates are reasonable for USA if 18.0 <= lat <= 72.0 and -180.0 <= lon <= -65.0: # USA bounds including Alaska/Hawaii df.at[idx, 'latitude'] = lat df.at[idx, 'longitude'] = lon success_count += 1 print(f" ✅ {row['name']}: {lat:.4f}, {lon:.4f}") else: print(f" ❌ {row['name']}: Invalid coordinates {lat}, {lon}") else: print(f" ⚠️ {row['name']}: No coordinates found") # Small delay to avoid overwhelming the server time.sleep(0.3) except Exception as e: print(f" ❌ Error getting coordinates for {row['name']}: {e}") continue print(f"Successfully extracted coordinates for {success_count}/{len(sample_df)} incidents") return df # Enhanced map generation with FIRMS data def generate_enhanced_map(df, firms_df): """Generate map with both InciWeb incidents and FIRMS hotspots - with robust error handling""" try: print("Starting map generation...") # Create map centered on the US m = folium.Map(location=[39.8283, -98.5795], zoom_start=4) # Add FIRMS heat map layer for all USA hotspots (even if no InciWeb coordinates) if not firms_df.empty: print(f"Adding {len(firms_df)} FIRMS hotspots to map...") try: # Limit to first 1000 hotspots for performance sample_firms = firms_df.head(1000) heat_data = [] for _, row in sample_firms.iterrows(): try: lat, lon = float(row['latitude']), float(row['longitude']) frp = float(row.get('frp', 1)) if -90 <= lat <= 90 and -180 <= lon <= 180: # Valid coordinates heat_data.append([lat, lon, min(frp, 100)]) except (ValueError, TypeError): continue if heat_data: HeatMap( heat_data, name="Fire Intensity Heatmap (NASA FIRMS)", radius=15, blur=10, max_zoom=1, gradient={0.2: 'blue', 0.4: 'lime', 0.6: 'orange', 1: 'red'} ).add_to(m) print(f"Added heatmap with {len(heat_data)} valid hotspots") # Add some sample FIRMS points as individual markers for i, (_, hotspot) in enumerate(sample_firms.head(50).iterrows()): try: lat, lon = float(hotspot['latitude']), float(hotspot['longitude']) frp = float(hotspot.get('frp', 1)) conf = hotspot.get('confidence', 'N/A') acq_time = hotspot.get('acq_time', 'N/A') if -90 <= lat <= 90 and -180 <= lon <= 180: folium.CircleMarker( location=[lat, lon], radius=2 + min(frp / 10, 8), popup=f"🔥 FIRMS Hotspot
FRP: {frp} MW
Confidence: {conf}%
Time: {acq_time}", color='red', fillColor='orange', fillOpacity=0.7, weight=1 ).add_to(m) except (ValueError, TypeError, KeyError): continue except Exception as e: print(f"Error adding FIRMS data to map: {e}") # Add incident markers if we have coordinates incidents_with_coords = df[(df['latitude'].notna()) & (df['longitude'].notna())] if not df.empty else pd.DataFrame() active_incidents = 0 inactive_incidents = 0 if not incidents_with_coords.empty: print(f"Adding {len(incidents_with_coords)} InciWeb incidents with coordinates to map...") # Add incident markers with error handling try: incident_cluster = MarkerCluster(name="InciWeb Incidents").add_to(m) for _, row in incidents_with_coords.iterrows(): try: lat, lon = float(row['latitude']), float(row['longitude']) if not (-90 <= lat <= 90 and -180 <= lon <= 180): continue # Determine marker color based on activity and type is_active = row.get('is_active', False) if is_active: active_incidents += 1 activity_level = row.get('activity_level', 'Unknown') if activity_level == 'Very High': color = 'red' elif activity_level == 'High': color = 'orange' elif activity_level == 'Medium': color = 'yellow' else: color = 'lightred' else: inactive_incidents += 1 color = 'gray' # Create popup content safely name = str(row.get('name', 'Unknown')) incident_type = str(row.get('type', 'N/A')) location = str(row.get('location', 'N/A')) size = row.get('size', 'N/A') updated = str(row.get('updated', 'N/A')) firms_hotspots = int(row.get('firms_hotspots', 0)) total_frp = float(row.get('total_frp', 0)) avg_confidence = float(row.get('avg_confidence', 0)) activity_level = str(row.get('activity_level', 'Unknown')) popup_content = f"""

{name}

Type: {incident_type}
Location: {location}
Size: {size} acres
Last Updated: {updated}

🔥 Fire Activity (NASA FIRMS)
Status: {'🔴 ACTIVE' if is_active else '⚫ Inactive'}
Activity Level: {activity_level}
Hotspots (24h): {firms_hotspots}
Total Fire Power: {total_frp:.1f} MW
Avg Confidence: {avg_confidence:.1f}%
""" folium.Marker( location=[lat, lon], popup=folium.Popup(popup_content, max_width=350), icon=folium.Icon(color=color) ).add_to(incident_cluster) except Exception as e: print(f"Error adding incident marker: {e}") continue except Exception as e: print(f"Error creating incident markers: {e}") else: print("No InciWeb incidents have coordinates, showing FIRMS data only") inactive_incidents = len(df) if not df.empty else 0 # Add custom legend total_hotspots = len(firms_df) if not firms_df.empty else 0 total_incidents = len(df) if not df.empty else 0 legend_html = f'''
🔥 Wildfire Activity Status
InciWeb Incidents:
Very High Activity
High Activity
Medium Activity
Low Activity
Inactive/No Data
NASA FIRMS Data:
Fire Hotspots (24h)
Heat map shows fire intensity
Statistics:
🔴 Active InciWeb: {active_incidents}
⚫ Inactive InciWeb: {inactive_incidents}
📍 Total InciWeb: {total_incidents}
🌡️ Total FIRMS Hotspots: {total_hotspots}
📊 Incidents with Coords: {len(incidents_with_coords)}
''' # Add layer control try: folium.LayerControl().add_to(m) except Exception as e: print(f"Error adding layer control: {e}") # Get map HTML and add legend try: map_html = m._repr_html_() map_with_legend = map_html.replace('', legend_html + '') print("Map generation completed successfully") return map_with_legend except Exception as e: print(f"Error generating final map HTML: {e}") return f"
Map generation error: {str(e)}
" except Exception as e: print(f"Critical error in map generation: {e}") import traceback traceback.print_exc() return f"
Critical map error: {str(e)}
" # Enhanced visualization functions def generate_enhanced_visualizations(df, firms_df): """Generate enhanced visualizations with FIRMS data integration - with robust error handling""" figures = [] try: print("Starting visualization generation...") if df.empty: print("Warning: Empty dataframe for visualizations") return [px.bar(title="No data available")] # 1. Activity Status Overview try: if 'is_active' in df.columns: activity_counts = df['is_active'].value_counts() if not activity_counts.empty: activity_summary = activity_counts.reset_index() activity_summary.columns = ['is_active', 'count'] activity_summary['status'] = activity_summary['is_active'].map({ True: 'Active (FIRMS detected)', False: 'Inactive/Unknown' }) fig1 = px.pie( activity_summary, values='count', names='status', title="🔥 Wildfire Activity Status (Based on NASA FIRMS Data)", color_discrete_map={ 'Active (FIRMS detected)': 'red', 'Inactive/Unknown': 'gray' } ) fig1.update_traces(textinfo='label+percent+value') else: fig1 = px.bar(title="No activity status data available") else: fig1 = px.bar(title="Activity status data not available") except Exception as e: print(f"Error creating activity status chart: {e}") fig1 = px.bar(title=f"Activity status error: {str(e)}") figures.append(fig1) # 2. Incident Type Distribution (Simple fallback) try: if 'type' in df.columns and df['type'].notna().any(): type_counts = df['type'].value_counts().head(10).reset_index() type_counts.columns = ['incident_type', 'count'] fig2 = px.bar( type_counts, x='incident_type', y='count', title="📊 Incidents by Type", labels={'incident_type': 'Incident Type', 'count': 'Count'} ) else: fig2 = px.bar(title="No incident type data available") except Exception as e: print(f"Error creating type distribution chart: {e}") fig2 = px.bar(title=f"Type distribution error: {str(e)}") figures.append(fig2) # 3. State Distribution try: if 'state' in df.columns and df['state'].notna().any(): state_counts = df['state'].value_counts().head(10).reset_index() state_counts.columns = ['state_name', 'count'] fig3 = px.bar( state_counts, x='state_name', y='count', title="🗺️ Incidents by State (Top 10)", labels={'state_name': 'State', 'count': 'Count'} ) else: fig3 = px.bar(title="No state data available") except Exception as e: print(f"Error creating state distribution chart: {e}") fig3 = px.bar(title=f"State distribution error: {str(e)}") figures.append(fig3) # 4. FIRMS Hotspot Timeline (if available) try: if not firms_df.empty and 'datetime' in firms_df.columns: # Group by hour to show detection pattern firms_df_copy = firms_df.copy() firms_df_copy['hour'] = pd.to_datetime(firms_df_copy['datetime']).dt.floor('H') hourly_detections = firms_df_copy.groupby('hour').size().reset_index(name='detections') if not hourly_detections.empty: fig4 = px.line( hourly_detections, x='hour', y='detections', title="🕐 Fire Hotspot Detections Over Time (Last 24 Hours)", labels={'hour': 'Time', 'detections': 'Number of Hotspots Detected'} ) fig4.update_traces(line_color='red') else: fig4 = px.bar(title="No FIRMS temporal data available") else: fig4 = px.bar(title="FIRMS temporal data not available") except Exception as e: print(f"Error creating FIRMS timeline chart: {e}") fig4 = px.bar(title=f"FIRMS timeline error: {str(e)}") figures.append(fig4) # 5. Fire Activity Level Distribution (if available) try: if 'activity_level' in df.columns and df['activity_level'].notna().any(): # Filter out Unknown values activity_df = df[df['activity_level'] != 'Unknown'] if not activity_df.empty and activity_df['activity_level'].notna().any(): activity_levels = activity_df['activity_level'].value_counts().reset_index() activity_levels.columns = ['activity_level', 'count'] # Define order and colors level_order = ['Very High', 'High', 'Medium', 'Low', 'Minimal'] color_map = { 'Very High': 'darkred', 'High': 'red', 'Medium': 'orange', 'Low': 'yellow', 'Minimal': 'lightblue' } fig5 = px.bar( activity_levels, x='activity_level', y='count', title="📊 Fire Activity Levels (NASA FIRMS Intensity)", labels={'activity_level': 'Activity Level', 'count': 'Number of Incidents'}, color='activity_level', color_discrete_map=color_map, category_orders={'activity_level': level_order} ) else: fig5 = px.bar(title="No activity level data with known values") else: fig5 = px.bar(title="Activity level data not available") except Exception as e: print(f"Error creating activity level chart: {e}") fig5 = px.bar(title=f"Activity level error: {str(e)}") figures.append(fig5) print(f"Generated {len(figures)} visualizations") return figures except Exception as e: print(f"Critical error in visualization generation: {e}") import traceback traceback.print_exc() return [px.bar(title=f"Critical visualization error: {str(e)}")] # Main application function def create_enhanced_wildfire_app(): """Create the enhanced Gradio application""" with gr.Blocks(title="Enhanced InciWeb + NASA FIRMS Wildfire Tracker", theme=gr.themes.Soft()) as app: gr.Markdown(""" # 🔥 Enhanced Wildfire Tracker ## InciWeb Incidents + NASA FIRMS Real-Time Fire Detection This application combines wildfire incident reports from InciWeb with real-time satellite fire detection data from NASA FIRMS to provide: - **Active fire status** based on satellite hotspot detection - **Fire intensity metrics** using Fire Radiative Power (FRP) - **Real-time hotspot mapping** from the last 24 hours - **Enhanced situational awareness** for wildfire management """) with gr.Row(): fetch_btn = gr.Button("🚀 Fetch Latest Data (InciWeb + NASA FIRMS)", variant="primary", size="lg") status_text = gr.Textbox(label="Status", interactive=False, value="Ready to fetch data...") with gr.Tabs(): with gr.TabItem("🗺️ Enhanced Map"): map_display = gr.HTML(label="Interactive Map with Fire Activity") with gr.TabItem("📊 Enhanced Analytics"): with gr.Row(): plot_selector = gr.Dropdown( choices=[ "Activity Status Overview", "Fire Activity Levels", "Intensity vs Size Analysis", "Hotspot Detection Timeline", "State Activity Breakdown" ], label="Select Visualization", value="Activity Status Overview" ) plot_display = gr.Plot(label="Enhanced Analytics") with gr.TabItem("📋 Data Tables"): with gr.Tabs(): with gr.TabItem("InciWeb Incidents"): inciweb_table = gr.Dataframe(label="InciWeb Incidents with FIRMS Integration") with gr.TabItem("NASA FIRMS Hotspots"): firms_table = gr.Dataframe(label="NASA FIRMS Fire Hotspots (USA, 24h)") with gr.TabItem("📁 Export Data"): gr.Markdown("### Download Enhanced Dataset") with gr.Row(): download_csv = gr.File(label="Download Enhanced CSV") download_geojson = gr.File(label="Download GeoJSON") # Store data in state app_state = gr.State({}) def fetch_and_process_data(): """Main data processing function with comprehensive error handling and debugging""" try: yield "📡 Fetching InciWeb incident data...", None, None, None, None, None, None # Fetch InciWeb data with error handling try: print("Step 1: Fetching InciWeb data...") inciweb_df = fetch_inciweb_data() if inciweb_df.empty: yield "❌ Failed to fetch InciWeb data", None, None, None, None, None, None return print(f"Step 1 SUCCESS: Got {len(inciweb_df)} incidents") except Exception as e: print(f"Step 1 ERROR: {e}") yield f"❌ Error fetching InciWeb data: {str(e)}", None, None, None, None, None, None return yield f"✅ Found {len(inciweb_df)} InciWeb incidents. Getting coordinates...", None, None, None, None, None, None # Get coordinates for sample incidents with error handling try: print("Step 2: Getting coordinates...") inciweb_df = add_coordinates_to_incidents(inciweb_df, max_incidents=15) coords_count = len(inciweb_df[(inciweb_df['latitude'].notna()) & (inciweb_df['longitude'].notna())]) print(f"Step 2 SUCCESS: Got coordinates for {coords_count} incidents") except Exception as e: print(f"Step 2 ERROR: {e}") # Continue with the data we have yield "🛰️ Fetching NASA FIRMS fire detection data...", None, None, None, None, None, None # Fetch FIRMS data with error handling try: print("Step 3: Fetching FIRMS data...") firms_df = fetch_firms_data() if firms_df.empty: print("Step 3 WARNING: FIRMS data empty") # Still useful to show InciWeb data even without FIRMS yield "⚠️ FIRMS data unavailable, generating basic visualization...", None, None, None, None, None, None # Generate basic map and visualizations without FIRMS data try: print("Generating basic map without FIRMS...") map_html = generate_enhanced_map(inciweb_df, pd.DataFrame()) print("Generating basic visualizations...") plots = generate_enhanced_visualizations(inciweb_df, pd.DataFrame()) # Create CSV file import tempfile csv_file = tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=False) inciweb_df.to_csv(csv_file.name, index=False) csv_file.close() final_status = f"✅ Partial success! Found {len(inciweb_df)} InciWeb incidents (FIRMS data unavailable)" yield (final_status, map_html, plots[0], inciweb_df, pd.DataFrame(), csv_file.name, {"inciweb_df": inciweb_df, "firms_df": pd.DataFrame(), "plots": plots}) return except Exception as e: print(f"Error in basic visualization: {e}") yield f"❌ Error in basic visualization: {str(e)}", None, None, inciweb_df, pd.DataFrame(), None, None return print(f"Step 3 SUCCESS: Got {len(firms_df)} FIRMS hotspots") except Exception as e: print(f"Step 3 ERROR: {e}") yield f"❌ Error fetching FIRMS data: {str(e)}", None, None, inciweb_df, pd.DataFrame(), None, None return yield f"✅ Found {len(firms_df)} USA fire hotspots. Matching with incidents...", None, None, None, None, None, None # Match FIRMS data to InciWeb incidents with error handling try: print("Step 4: Matching FIRMS to InciWeb...") enhanced_df = match_firms_to_inciweb(inciweb_df, firms_df) print(f"Step 4 SUCCESS: Enhanced {len(enhanced_df)} incidents") except Exception as e: print(f"Step 4 ERROR: {e}") # Use original data if matching fails enhanced_df = inciweb_df print("Using original InciWeb data without FIRMS matching") yield "🗺️ Generating enhanced map...", None, None, None, None, None, None # Generate map and visualizations with error handling try: print("Step 5: Generating map...") map_html = generate_enhanced_map(enhanced_df, firms_df) print("Step 5a SUCCESS: Map generated") print("Step 5: Generating visualizations...") plots = generate_enhanced_visualizations(enhanced_df, firms_df) print("Step 5b SUCCESS: Visualizations generated") except Exception as e: print(f"Step 5 ERROR: {e}") # Create fallback simple content map_html = f"
Map generation failed: {str(e)}
Data is available in tables below.
" plots = [px.bar(title=f"Visualization generation failed: {str(e)}")] # Prepare export data - create temporary files try: print("Step 6: Creating CSV export...") import tempfile csv_file = tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=False) enhanced_df.to_csv(csv_file.name, index=False) csv_file.close() print("Step 6 SUCCESS: CSV created") except Exception as e: print(f"Step 6 ERROR: {e}") csv_file = None # Calculate final statistics try: active_count = (enhanced_df.get('is_active', pd.Series([False])) == True).sum() total_hotspots = len(firms_df) if not firms_df.empty else 0 coords_count = len(enhanced_df[(enhanced_df['latitude'].notna()) & (enhanced_df['longitude'].notna())]) final_status = f"✅ Complete! {active_count} active fires, {total_hotspots} hotspots, {coords_count} with coordinates" print(f"FINAL SUCCESS: {final_status}") yield (final_status, map_html, plots[0], enhanced_df, firms_df, csv_file.name if csv_file else None, {"inciweb_df": enhanced_df, "firms_df": firms_df, "plots": plots}) except Exception as e: print(f"Error calculating final statistics: {e}") final_status = "✅ Process completed with some errors" yield (final_status, map_html, plots[0], enhanced_df, firms_df, csv_file.name if csv_file else None, {"inciweb_df": enhanced_df, "firms_df": firms_df, "plots": plots}) except Exception as e: import traceback error_details = traceback.format_exc() print(f"CRITICAL ERROR in main process: {error_details}") yield f"❌ Critical Error: {str(e)}", None, None, None, None, None, None def update_plot(plot_name, state_data): """Update plot based on selection""" if not state_data or "plots" not in state_data: return px.bar(title="No data available") plot_options = [ "Activity Status Overview", "Fire Activity Levels", "Intensity vs Size Analysis", "Hotspot Detection Timeline", "State Activity Breakdown" ] try: plot_index = plot_options.index(plot_name) return state_data["plots"][plot_index] except (ValueError, IndexError): return state_data["plots"][0] if state_data["plots"] else px.bar(title="Plot not available") # Wire up the interface fetch_btn.click( fetch_and_process_data, outputs=[status_text, map_display, plot_display, inciweb_table, firms_table, download_csv, app_state] ) plot_selector.change( update_plot, inputs=[plot_selector, app_state], outputs=[plot_display] ) return app # Create and launch the application if __name__ == "__main__": app = create_enhanced_wildfire_app() app.launch(share=True, debug=True)