# Install required packages if missing import subprocess import sys def install_package(package): try: __import__(package) except ImportError: print(f"Installing {package}...") subprocess.check_call([sys.executable, "-m", "pip", "install", package]) # Install required packages required_packages = [ 'gradio', 'pandas', 'requests', 'beautifulsoup4', 'plotly', 'folium', 'numpy', 'geopy' ] for package in required_packages: install_package(package) # Now import everything import gradio as gr import pandas as pd import requests from bs4 import BeautifulSoup import plotly.express as px import plotly.graph_objects as go import folium from folium.plugins import MarkerCluster, HeatMap import re import numpy as np from urllib.parse import urljoin import time import json import os from geopy.distance import geodesic from datetime import datetime, timedelta import warnings warnings.filterwarnings('ignore') # Function to convert degrees, minutes, seconds to decimal degrees def dms_to_decimal(degrees, minutes, seconds, direction): decimal = float(degrees) + float(minutes)/60 + float(seconds)/3600 if direction in ['S', 'W', '-']: decimal = -decimal return decimal # Function to parse DMS coordinates from text def parse_dms_coordinates(text): if not text: return None, None # Clean up the text text = text.replace('**', '').replace('\n', ' ').strip() # Look for DMS format lat_pattern = r'(\d+)°\s*(\d+)\'\s*(\d+\.?\d*)\'?\'\s*(?:Latitude|[NS])' lon_pattern = r'(-?\d+)°\s*(\d+)\'\s*(\d+\.?\d*)\'?\'\s*(?:Longitude|[EW])' lat_match = re.search(lat_pattern, text) lon_match = re.search(lon_pattern, text) latitude = None longitude = None if lat_match: lat_deg, lat_min, lat_sec = lat_match.groups() # Determine direction (N positive, S negative) lat_dir = 'N' if 'S' in text: lat_dir = 'S' latitude = dms_to_decimal(lat_deg, lat_min, lat_sec, lat_dir) if lon_match: lon_deg, lon_min, lon_sec = lon_match.groups() # Determine direction (E positive, W negative) lon_dir = 'E' if 'W' in text or '-' in lon_deg: lon_dir = 'W' longitude = dms_to_decimal(lon_deg.replace('-', ''), lon_min, lon_sec, lon_dir) return latitude, longitude # Function to fetch NASA FIRMS data def fetch_firms_data(): """ Fetch NASA FIRMS VIIRS active fire data for the last 24 hours Filters for USA only and returns relevant fire hotspot data """ firms_url = "https://firms.modaps.eosdis.nasa.gov/data/active_fire/viirs/csv/J1_VIIRS_C2_Global_24h.csv" try: print("Fetching NASA FIRMS data...") response = requests.get(firms_url, timeout=60) response.raise_for_status() # Read CSV data from io import StringIO firms_df = pd.read_csv(StringIO(response.text)) print(f"Retrieved {len(firms_df)} global fire hotspots") # Filter for USA coordinates (approximate bounding box) # Continental US, Alaska, Hawaii usa_firms = firms_df[ ( # Continental US ((firms_df['latitude'] >= 24.5) & (firms_df['latitude'] <= 49.0) & (firms_df['longitude'] >= -125.0) & (firms_df['longitude'] <= -66.0)) | # Alaska ((firms_df['latitude'] >= 54.0) & (firms_df['latitude'] <= 72.0) & (firms_df['longitude'] >= -180.0) & (firms_df['longitude'] <= -130.0)) | # Hawaii ((firms_df['latitude'] >= 18.0) & (firms_df['latitude'] <= 23.0) & (firms_df['longitude'] >= -162.0) & (firms_df['longitude'] <= -154.0)) ) ].copy() print(f"Filtered to {len(usa_firms)} USA fire hotspots") # Add datetime column for easier processing usa_firms['datetime'] = pd.to_datetime(usa_firms['acq_date'] + ' ' + usa_firms['acq_time'].astype(str).str.zfill(4), format='%Y-%m-%d %H%M') # Sort by acquisition time (most recent first) usa_firms = usa_firms.sort_values('datetime', ascending=False) return usa_firms except Exception as e: print(f"Error fetching FIRMS data: {e}") return pd.DataFrame() # Function to match FIRMS hotspots with InciWeb incidents def match_firms_to_inciweb(inciweb_df, firms_df, max_distance_km=50): """ Match FIRMS hotspots to InciWeb incidents based on geographic proximity Args: inciweb_df: DataFrame with InciWeb incident data (must have latitude/longitude) firms_df: DataFrame with FIRMS hotspot data max_distance_km: Maximum distance in km to consider a match Returns: Enhanced inciweb_df with FIRMS data and activity status """ if firms_df.empty or inciweb_df.empty: return inciweb_df print(f"Matching {len(firms_df)} FIRMS hotspots to {len(inciweb_df)} InciWeb incidents...") # Initialize new columns inciweb_df = inciweb_df.copy() inciweb_df['firms_hotspots'] = 0 inciweb_df['total_frp'] = 0.0 # Fire Radiative Power inciweb_df['avg_confidence'] = 0.0 inciweb_df['latest_hotspot'] = None inciweb_df['is_active'] = False inciweb_df['hotspot_coords'] = None inciweb_df['activity_level'] = 'Unknown' # Only process incidents that have coordinates incidents_with_coords = inciweb_df[ (inciweb_df['latitude'].notna()) & (inciweb_df['longitude'].notna()) ].copy() print(f"Processing {len(incidents_with_coords)} incidents with coordinates...") for idx, incident in incidents_with_coords.iterrows(): incident_coords = (incident['latitude'], incident['longitude']) # Find FIRMS hotspots within the specified distance hotspot_distances = [] matched_hotspots = [] for _, hotspot in firms_df.iterrows(): hotspot_coords = (hotspot['latitude'], hotspot['longitude']) try: distance = geodesic(incident_coords, hotspot_coords).kilometers if distance <= max_distance_km: hotspot_distances.append(distance) matched_hotspots.append(hotspot) except Exception as e: continue # Skip invalid coordinates if matched_hotspots: matched_df = pd.DataFrame(matched_hotspots) # Calculate aggregated metrics num_hotspots = len(matched_hotspots) total_frp = matched_df['frp'].sum() if 'frp' in matched_df.columns else 0 avg_confidence = matched_df['confidence'].mean() if 'confidence' in matched_df.columns else 0 latest_hotspot = matched_df['datetime'].max() if 'datetime' in matched_df.columns else None # Determine activity level based on hotspot count and FRP if num_hotspots >= 20 and total_frp >= 100: activity_level = 'Very High' elif num_hotspots >= 10 and total_frp >= 50: activity_level = 'High' elif num_hotspots >= 5 and total_frp >= 20: activity_level = 'Medium' elif num_hotspots >= 1: activity_level = 'Low' else: activity_level = 'Minimal' # Update the incident data inciweb_df.at[idx, 'firms_hotspots'] = num_hotspots inciweb_df.at[idx, 'total_frp'] = total_frp inciweb_df.at[idx, 'avg_confidence'] = avg_confidence inciweb_df.at[idx, 'latest_hotspot'] = latest_hotspot inciweb_df.at[idx, 'is_active'] = True inciweb_df.at[idx, 'activity_level'] = activity_level # Store hotspot coordinates for visualization hotspot_coords = [(hs['latitude'], hs['longitude'], hs.get('frp', 1)) for hs in matched_hotspots] inciweb_df.at[idx, 'hotspot_coords'] = hotspot_coords print(f" {incident['name']}: {num_hotspots} hotspots, {total_frp:.1f} FRP, {activity_level} activity") # Mark incidents without recent hotspots as potentially inactive active_count = (inciweb_df['is_active'] == True).sum() total_with_coords = len(incidents_with_coords) print(f"Found {active_count} active incidents out of {total_with_coords} with coordinates") return inciweb_df # Function to scrape InciWeb data from the accessible view page def fetch_inciweb_data(): base_url = "https://inciweb.wildfire.gov" accessible_url = urljoin(base_url, "/accessible-view") try: print(f"Fetching data from: {accessible_url}") response = requests.get(accessible_url, timeout=30) response.raise_for_status() except requests.exceptions.RequestException as e: print(f"Error fetching data from InciWeb: {e}") return pd.DataFrame() soup = BeautifulSoup(response.content, "html.parser") incidents = [] # Find all incident links and process them incident_links = soup.find_all("a", href=re.compile(r"/incident-information/")) for link in incident_links: try: incident = {} # Extract incident name and ID from link incident["name"] = link.text.strip() incident["link"] = urljoin(base_url, link.get("href")) incident["id"] = link.get("href").split("/")[-1] # Navigate through the structure to get incident details row = link.parent if row and row.name == "td": row_cells = row.parent.find_all("td") # Parse the row cells to extract information if len(row_cells) >= 5: incident_type_cell = row_cells[1] if len(row_cells) > 1 else None if incident_type_cell: incident["type"] = incident_type_cell.text.strip() location_cell = row_cells[2] if len(row_cells) > 2 else None if location_cell: incident["location"] = location_cell.text.strip() state_match = re.search(r'([A-Z]{2})', incident["location"]) if state_match: incident["state"] = state_match.group(1) else: state_parts = incident["location"].split(',') if state_parts: incident["state"] = state_parts[0].strip() else: incident["state"] = None size_cell = row_cells[3] if len(row_cells) > 3 else None if size_cell: size_text = size_cell.text.strip() size_match = re.search(r'(\d+(?:,\d+)*)', size_text) if size_match: incident["size"] = int(size_match.group(1).replace(',', '')) else: incident["size"] = None updated_cell = row_cells[4] if len(row_cells) > 4 else None if updated_cell: incident["updated"] = updated_cell.text.strip() incidents.append(incident) except Exception as e: print(f"Error processing incident: {e}") continue df = pd.DataFrame(incidents) # Ensure all expected columns exist for col in ["size", "type", "location", "state", "updated"]: if col not in df.columns: df[col] = None df["size"] = pd.to_numeric(df["size"], errors="coerce") print(f"Fetched {len(df)} incidents") return df # Enhanced coordinate extraction with multiple methods def get_incident_coordinates_basic(incident_url): """Enhanced coordinate extraction with fallback methods""" try: print(f" Fetching coordinates from: {incident_url}") response = requests.get(incident_url, timeout=20) response.raise_for_status() soup = BeautifulSoup(response.content, "html.parser") # Method 1: Look for meta tags with coordinates meta_tags = soup.find_all("meta") for meta in meta_tags: if meta.get("name") == "geo.position": coords = meta.get("content", "").split(";") if len(coords) >= 2: try: lat, lon = float(coords[0].strip()), float(coords[1].strip()) print(f" Found coordinates via meta tags: {lat}, {lon}") return lat, lon except ValueError: pass # Method 2: Look for coordinate table rows for row in soup.find_all('tr'): th = row.find('th') if th and 'Coordinates' in th.get_text(strip=True): coord_cell = row.find('td') if coord_cell: coord_text = coord_cell.get_text(strip=True) # Try to extract decimal coordinates lat_match = re.search(r'(-?\d+\.?\d+)', coord_text) if lat_match: # Look for longitude after latitude lon_match = re.search(r'(-?\d+\.?\d+)', coord_text[lat_match.end():]) if lon_match: try: lat = float(lat_match.group(1)) lon = float(lon_match.group(1)) print(f" Found coordinates via table: {lat}, {lon}") return lat, lon except ValueError: pass # Method 3: Look for script tags with map data script_tags = soup.find_all("script") for script in script_tags: if not script.string: continue script_text = script.string # Look for map initialization patterns if "L.map" in script_text or "leaflet" in script_text.lower(): setview_match = re.search(r'setView\s*\(\s*\[\s*(-?\d+\.?\d*)\s*,\s*(-?\d+\.?\d*)\s*\]', script_text, re.IGNORECASE) if setview_match: lat, lon = float(setview_match.group(1)), float(setview_match.group(2)) print(f" Found coordinates via map script: {lat}, {lon}") return lat, lon # Look for direct coordinate assignments lat_match = re.search(r'(?:lat|latitude)\s*[=:]\s*(-?\d+\.?\d*)', script_text, re.IGNORECASE) lon_match = re.search(r'(?:lon|lng|longitude)\s*[=:]\s*(-?\d+\.?\d*)', script_text, re.IGNORECASE) if lat_match and lon_match: lat, lon = float(lat_match.group(1)), float(lon_match.group(1)) print(f" Found coordinates via script variables: {lat}, {lon}") return lat, lon # Method 4: Use predetermined coordinates for known incidents (fallback) known_coords = get_known_incident_coordinates(incident_url) if known_coords: print(f" Using known coordinates: {known_coords}") return known_coords print(f" No coordinates found for {incident_url}") return None, None except Exception as e: print(f" Error extracting coordinates from {incident_url}: {e}") return None, None def get_known_incident_coordinates(incident_url): """Fallback coordinates for some known incident locations""" # Extract incident name/ID from URL incident_id = incident_url.split('/')[-1] if incident_url else "" # Some predetermined coordinates for major fire-prone areas known_locations = { # These are approximate coordinates for demonstration 'horse-fire': (42.0, -104.0), # Wyoming 'aggie-creek-fire': (64.0, -153.0), # Alaska 'big-creek-fire': (47.0, -114.0), # Montana 'conner-fire': (39.5, -116.0), # Nevada 'trout-fire': (35.0, -106.0), # New Mexico 'basin-fire': (34.0, -112.0), # Arizona 'rowena-fire': (45.0, -121.0), # Oregon 'post-fire': (44.0, -115.0), # Idaho } for key, coords in known_locations.items(): if key in incident_id.lower(): return coords return None # Function to get coordinates for a subset of incidents (for demo efficiency) def add_coordinates_to_incidents(df, max_incidents=30): """Add coordinates to incidents with improved success rate""" df = df.copy() df['latitude'] = None df['longitude'] = None # Prioritize recent wildfires, then other incidents recent_wildfires = df[ (df['type'].str.contains('Wildfire', na=False)) & (df['updated'].str.contains('ago|seconds|minutes|hours', na=False)) ].head(max_incidents // 2) other_incidents = df[ ~df.index.isin(recent_wildfires.index) ].head(max_incidents // 2) sample_df = pd.concat([recent_wildfires, other_incidents]).head(max_incidents) print(f"Getting coordinates for {len(sample_df)} incidents (prioritizing recent wildfires)...") success_count = 0 for idx, row in sample_df.iterrows(): if pd.notna(row.get("link")): try: lat, lon = get_incident_coordinates_basic(row["link"]) if lat is not None and lon is not None: # Validate coordinates are reasonable for USA if 18.0 <= lat <= 72.0 and -180.0 <= lon <= -65.0: # USA bounds including Alaska/Hawaii df.at[idx, 'latitude'] = lat df.at[idx, 'longitude'] = lon success_count += 1 print(f" ✅ {row['name']}: {lat:.4f}, {lon:.4f}") else: print(f" ❌ {row['name']}: Invalid coordinates {lat}, {lon}") else: print(f" ⚠️ {row['name']}: No coordinates found") # Small delay to avoid overwhelming the server time.sleep(0.3) except Exception as e: print(f" ❌ Error getting coordinates for {row['name']}: {e}") continue print(f"Successfully extracted coordinates for {success_count}/{len(sample_df)} incidents") return df # Enhanced map generation with FIRMS data def generate_enhanced_map(df, firms_df): """Generate map with both InciWeb incidents and FIRMS hotspots""" # Create map centered on the US m = folium.Map(location=[39.8283, -98.5795], zoom_start=4) # Add FIRMS heat map layer for all USA hotspots (even if no InciWeb coordinates) if not firms_df.empty: print(f"Adding {len(firms_df)} FIRMS hotspots to map...") heat_data = [[row['latitude'], row['longitude'], min(row.get('frp', 1), 100)] for _, row in firms_df.iterrows()] if heat_data: HeatMap( heat_data, name="Fire Intensity Heatmap (NASA FIRMS)", radius=15, blur=10, max_zoom=1, gradient={0.2: 'blue', 0.4: 'lime', 0.6: 'orange', 1: 'red'} ).add_to(m) # Add some sample FIRMS points as markers sample_firms = firms_df.head(100) # Show top 100 hotspots as individual markers for _, hotspot in sample_firms.iterrows(): folium.CircleMarker( location=[hotspot['latitude'], hotspot['longitude']], radius=2 + min(hotspot.get('frp', 1) / 10, 8), popup=f"🔥 FIRMS Hotspot
FRP: {hotspot.get('frp', 'N/A')} MW
Confidence: {hotspot.get('confidence', 'N/A')}%
Time: {hotspot.get('acq_time', 'N/A')}", color='red', fillColor='orange', fillOpacity=0.7, weight=1 ).add_to(m) # Add incident markers if we have coordinates incidents_with_coords = df[(df['latitude'].notna()) & (df['longitude'].notna())] if not incidents_with_coords.empty: print(f"Adding {len(incidents_with_coords)} InciWeb incidents with coordinates to map...") # Add incident markers incident_cluster = MarkerCluster(name="InciWeb Incidents").add_to(m) # Track statistics active_incidents = 0 inactive_incidents = 0 for _, row in incidents_with_coords.iterrows(): lat, lon = row['latitude'], row['longitude'] # Determine marker color based on activity and type if row.get('is_active', False): active_incidents += 1 activity_level = row.get('activity_level', 'Unknown') if activity_level == 'Very High': color = 'red' icon = 'fire' elif activity_level == 'High': color = 'orange' icon = 'fire' elif activity_level == 'Medium': color = 'yellow' icon = 'fire' else: color = 'lightred' icon = 'fire' else: inactive_incidents += 1 color = 'gray' icon = 'pause' # Create detailed popup popup_content = f"""

{row.get('name', 'Unknown')}

Type: {row.get('type', 'N/A')}
Location: {row.get('location', 'N/A')}
Size: {row.get('size', 'N/A')} acres
Last Updated: {row.get('updated', 'N/A')}

🔥 Fire Activity (NASA FIRMS)
Status: {'🔴 ACTIVE' if row.get('is_active', False) else '⚫ Inactive'}
Activity Level: {row.get('activity_level', 'Unknown')}
Hotspots (24h): {row.get('firms_hotspots', 0)}
Total Fire Power: {row.get('total_frp', 0):.1f} MW
Avg Confidence: {row.get('avg_confidence', 0):.1f}%
📋 More Details
""" folium.Marker( location=[lat, lon], popup=folium.Popup(popup_content, max_width=350), icon=folium.Icon(color=color, icon=icon, prefix='fa') ).add_to(incident_cluster) # Add hotspot visualization for active incidents if row.get('is_active', False) and row.get('hotspot_coords'): hotspot_coords = row.get('hotspot_coords', []) if hotspot_coords: # Add individual hotspot markers (smaller, less intrusive) for coord in hotspot_coords[:20]: # Limit to 20 hotspots per incident folium.CircleMarker( location=[coord[0], coord[1]], radius=3 + min(coord[2] / 20, 10), # Size based on FRP popup=f"🔥 Hotspot
FRP: {coord[2]:.1f} MW", color='red', fillColor='orange', fillOpacity=0.7 ).add_to(m) else: print("No InciWeb incidents have coordinates, showing FIRMS data only") active_incidents = 0 inactive_incidents = len(df) # Add custom legend total_hotspots = len(firms_df) if not firms_df.empty else 0 total_incidents = len(df) legend_html = f'''
🔥 Wildfire Activity Status
InciWeb Incidents:
Very High Activity
High Activity
Medium Activity
Low Activity
Inactive/No Data
NASA FIRMS Data:
Fire Hotspots (24h)
Heat map shows fire intensity
Statistics:
🔴 Active InciWeb: {active_incidents}
⚫ Inactive InciWeb: {inactive_incidents}
📍 Total InciWeb: {total_incidents}
🌡️ Total FIRMS Hotspots: {total_hotspots}
📊 Incidents with Coords: {len(incidents_with_coords)}
''' # Add layer control folium.LayerControl().add_to(m) # Get map HTML and add legend map_html = m._repr_html_() map_with_legend = map_html.replace('', legend_html + '') return map_with_legend # Enhanced visualization functions def generate_enhanced_visualizations(df, firms_df): """Generate enhanced visualizations with FIRMS data integration""" figures = [] if df.empty: return [px.bar(title="No data available")] # 1. Activity Status Overview if 'is_active' in df.columns: activity_summary = df['is_active'].value_counts().reset_index() activity_summary.columns = ['is_active', 'count'] activity_summary['status'] = activity_summary['is_active'].map({True: 'Active (FIRMS detected)', False: 'Inactive/Unknown'}) fig1 = px.pie( activity_summary, values='count', names='status', title="🔥 Wildfire Activity Status (Based on NASA FIRMS Data)", color_discrete_map={'Active (FIRMS detected)': 'red', 'Inactive/Unknown': 'gray'} ) fig1.update_traces(textinfo='label+percent+value') else: fig1 = px.bar(title="Activity status data not available") figures.append(fig1) # 2. Activity Level Distribution if 'activity_level' in df.columns and df['activity_level'].notna().any(): activity_levels = df[df['activity_level'] != 'Unknown']['activity_level'].value_counts().reset_index() activity_levels.columns = ['activity_level', 'count'] # Define order and colors level_order = ['Very High', 'High', 'Medium', 'Low', 'Minimal'] color_map = {'Very High': 'darkred', 'High': 'red', 'Medium': 'orange', 'Low': 'yellow', 'Minimal': 'lightblue'} fig2 = px.bar( activity_levels, x='activity_level', y='count', title="📊 Fire Activity Levels (NASA FIRMS Intensity)", labels={'activity_level': 'Activity Level', 'count': 'Number of Incidents'}, color='activity_level', color_discrete_map=color_map, category_orders={'activity_level': level_order} ) else: fig2 = px.bar(title="Activity level data not available") figures.append(fig2) # 3. Fire Radiative Power vs Incident Size if 'total_frp' in df.columns and 'size' in df.columns: active_df = df[(df['is_active'] == True) & (df['total_frp'] > 0) & (df['size'].notna())].copy() if not active_df.empty: fig3 = px.scatter( active_df, x='size', y='total_frp', size='firms_hotspots', color='activity_level', hover_data=['name', 'state', 'firms_hotspots'], title="🔥 Fire Intensity vs Incident Size (Active Fires Only)", labels={'size': 'Incident Size (acres)', 'total_frp': 'Total Fire Radiative Power (MW)'}, color_discrete_map={'Very High': 'darkred', 'High': 'red', 'Medium': 'orange', 'Low': 'yellow'} ) fig3.update_layout(xaxis_type="log", yaxis_type="log") else: fig3 = px.bar(title="No active fires with size and intensity data") else: fig3 = px.bar(title="Fire intensity vs size data not available") figures.append(fig3) # 4. Hotspot Detection Over Time (if FIRMS data available) if not firms_df.empty and 'datetime' in firms_df.columns: # Group by hour to show detection pattern firms_df['hour'] = firms_df['datetime'].dt.floor('H') hourly_detections = firms_df.groupby('hour').size().reset_index(name='detections') fig4 = px.line( hourly_detections, x='hour', y='detections', title="🕐 Fire Hotspot Detections Over Time (Last 24 Hours)", labels={'hour': 'Time', 'detections': 'Number of Hotspots Detected'} ) fig4.update_traces(line_color='red') else: fig4 = px.bar(title="FIRMS temporal data not available") figures.append(fig4) # 5. State-wise Active vs Inactive Breakdown if 'state' in df.columns and 'is_active' in df.columns: state_activity = df.groupby(['state', 'is_active']).size().reset_index(name='count') state_activity['status'] = state_activity['is_active'].map({True: 'Active', False: 'Inactive'}) # Get top 10 states by total incidents top_states = df['state'].value_counts().head(10).index.tolist() state_activity_filtered = state_activity[state_activity['state'].isin(top_states)] if not state_activity_filtered.empty: fig5 = px.bar( state_activity_filtered, x='state', y='count', color='status', title="🗺️ Active vs Inactive Incidents by State (Top 10)", labels={'state': 'State', 'count': 'Number of Incidents'}, color_discrete_map={'Active': 'red', 'Inactive': 'gray'} ) else: fig5 = px.bar(title="State activity data not available") else: fig5 = px.bar(title="State activity data not available") figures.append(fig5) return figures # Main application function def create_enhanced_wildfire_app(): """Create the enhanced Gradio application""" with gr.Blocks(title="Enhanced InciWeb + NASA FIRMS Wildfire Tracker", theme=gr.themes.Soft()) as app: gr.Markdown(""" # 🔥 Enhanced Wildfire Tracker ## InciWeb Incidents + NASA FIRMS Real-Time Fire Detection This application combines wildfire incident reports from InciWeb with real-time satellite fire detection data from NASA FIRMS to provide: - **Active fire status** based on satellite hotspot detection - **Fire intensity metrics** using Fire Radiative Power (FRP) - **Real-time hotspot mapping** from the last 24 hours - **Enhanced situational awareness** for wildfire management """) with gr.Row(): fetch_btn = gr.Button("🚀 Fetch Latest Data (InciWeb + NASA FIRMS)", variant="primary", size="lg") status_text = gr.Textbox(label="Status", interactive=False, value="Ready to fetch data...") with gr.Tabs(): with gr.TabItem("🗺️ Enhanced Map"): map_display = gr.HTML(label="Interactive Map with Fire Activity") with gr.TabItem("📊 Enhanced Analytics"): with gr.Row(): plot_selector = gr.Dropdown( choices=[ "Activity Status Overview", "Fire Activity Levels", "Intensity vs Size Analysis", "Hotspot Detection Timeline", "State Activity Breakdown" ], label="Select Visualization", value="Activity Status Overview" ) plot_display = gr.Plot(label="Enhanced Analytics") with gr.TabItem("📋 Data Tables"): with gr.Tabs(): with gr.TabItem("InciWeb Incidents"): inciweb_table = gr.Dataframe(label="InciWeb Incidents with FIRMS Integration") with gr.TabItem("NASA FIRMS Hotspots"): firms_table = gr.Dataframe(label="NASA FIRMS Fire Hotspots (USA, 24h)") with gr.TabItem("📁 Export Data"): gr.Markdown("### Download Enhanced Dataset") with gr.Row(): download_csv = gr.File(label="Download Enhanced CSV") download_geojson = gr.File(label="Download GeoJSON") # Store data in state app_state = gr.State({}) def fetch_and_process_data(): """Main data processing function""" try: yield "📡 Fetching InciWeb incident data...", None, None, None, None, None, None # Fetch InciWeb data inciweb_df = fetch_inciweb_data() if inciweb_df.empty: yield "❌ Failed to fetch InciWeb data", None, None, None, None, None, None return yield f"✅ Found {len(inciweb_df)} InciWeb incidents. Getting coordinates...", None, None, None, None, None, None # Get coordinates for sample incidents inciweb_df = add_coordinates_to_incidents(inciweb_df, max_incidents=15) yield "🛰️ Fetching NASA FIRMS fire detection data...", None, None, None, None, None, None # Fetch FIRMS data firms_df = fetch_firms_data() if firms_df.empty: yield "⚠️ FIRMS data unavailable, proceeding with InciWeb only", None, None, inciweb_df, firms_df, None, None return yield f"✅ Found {len(firms_df)} USA fire hotspots. Matching with incidents...", None, None, None, None, None, None # Match FIRMS data to InciWeb incidents enhanced_df = match_firms_to_inciweb(inciweb_df, firms_df) yield "🗺️ Generating enhanced map...", None, None, None, None, None, None # Generate map and visualizations map_html = generate_enhanced_map(enhanced_df, firms_df) plots = generate_enhanced_visualizations(enhanced_df, firms_df) # Prepare export data - create temporary files import tempfile # Create CSV file csv_file = tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=False) enhanced_df.to_csv(csv_file.name, index=False) csv_file.close() active_count = (enhanced_df.get('is_active', pd.Series([False])) == True).sum() total_hotspots = len(firms_df) final_status = f"✅ Complete! Found {active_count} active fires with {total_hotspots} total hotspots" yield (final_status, map_html, plots[0], enhanced_df, firms_df, csv_file.name, {"inciweb_df": enhanced_df, "firms_df": firms_df, "plots": plots}) except Exception as e: yield f"❌ Error: {str(e)}", None, None, None, None, None, None def update_plot(plot_name, state_data): """Update plot based on selection""" if not state_data or "plots" not in state_data: return px.bar(title="No data available") plot_options = [ "Activity Status Overview", "Fire Activity Levels", "Intensity vs Size Analysis", "Hotspot Detection Timeline", "State Activity Breakdown" ] try: plot_index = plot_options.index(plot_name) return state_data["plots"][plot_index] except (ValueError, IndexError): return state_data["plots"][0] if state_data["plots"] else px.bar(title="Plot not available") # Wire up the interface fetch_btn.click( fetch_and_process_data, outputs=[status_text, map_display, plot_display, inciweb_table, firms_table, download_csv, app_state] ) plot_selector.change( update_plot, inputs=[plot_selector, app_state], outputs=[plot_display] ) return app # Create and launch the application if __name__ == "__main__": app = create_enhanced_wildfire_app() app.launch(share=True, debug=True)