# Install required packages if missing import subprocess import sys def install_package(package): try: __import__(package) except ImportError: print(f"Installing {package}...") subprocess.check_call([sys.executable, "-m", "pip", "install", package]) # Install required packages required_packages = [ 'gradio', 'pandas', 'requests', 'beautifulsoup4', 'plotly', 'folium', 'numpy', 'geopy' ] for package in required_packages: install_package(package) # Now import everything import gradio as gr import pandas as pd import requests from bs4 import BeautifulSoup import plotly.express as px import plotly.graph_objects as go import folium from folium.plugins import MarkerCluster, HeatMap import re import numpy as np from urllib.parse import urljoin import time import json import os from geopy.distance import geodesic from datetime import datetime, timedelta import warnings warnings.filterwarnings('ignore') # Function to convert degrees, minutes, seconds to decimal degrees def dms_to_decimal(degrees, minutes, seconds, direction): decimal = float(degrees) + float(minutes)/60 + float(seconds)/3600 if direction in ['S', 'W', '-']: decimal = -decimal return decimal # Function to parse DMS coordinates from text def parse_dms_coordinates(text): if not text: return None, None # Clean up the text text = text.replace('**', '').replace('\n', ' ').strip() # Look for DMS format lat_pattern = r'(\d+)°\s*(\d+)\'\s*(\d+\.?\d*)\'?\'\s*(?:Latitude|[NS])' lon_pattern = r'(-?\d+)°\s*(\d+)\'\s*(\d+\.?\d*)\'?\'\s*(?:Longitude|[EW])' lat_match = re.search(lat_pattern, text) lon_match = re.search(lon_pattern, text) latitude = None longitude = None if lat_match: lat_deg, lat_min, lat_sec = lat_match.groups() # Determine direction (N positive, S negative) lat_dir = 'N' if 'S' in text: lat_dir = 'S' latitude = dms_to_decimal(lat_deg, lat_min, lat_sec, lat_dir) if lon_match: lon_deg, lon_min, lon_sec = lon_match.groups() # Determine direction (E positive, W negative) lon_dir = 'E' if 'W' in text or '-' in lon_deg: lon_dir = 'W' longitude = dms_to_decimal(lon_deg.replace('-', ''), lon_min, lon_sec, lon_dir) return latitude, longitude # Function to fetch NASA FIRMS data def fetch_firms_data(): """ Fetch NASA FIRMS VIIRS active fire data for the last 24 hours Filters for USA only and returns relevant fire hotspot data with cleaned numeric fields """ firms_url = "https://firms.modaps.eosdis.nasa.gov/data/active_fire/viirs/csv/J1_VIIRS_C2_Global_24h.csv" try: print("Fetching NASA FIRMS data...") response = requests.get(firms_url, timeout=60) response.raise_for_status() # Read CSV data from io import StringIO firms_df = pd.read_csv(StringIO(response.text)) print(f"Retrieved {len(firms_df)} global fire hotspots") # Filter for USA coordinates (approximate bounding box) # Continental US, Alaska, Hawaii usa_firms = firms_df[ ( # Continental US ((firms_df['latitude'] >= 24.5) & (firms_df['latitude'] <= 49.0) & (firms_df['longitude'] >= -125.0) & (firms_df['longitude'] <= -66.0)) | # Alaska ((firms_df['latitude'] >= 54.0) & (firms_df['latitude'] <= 72.0) & (firms_df['longitude'] >= -180.0) & (firms_df['longitude'] <= -130.0)) | # Hawaii ((firms_df['latitude'] >= 18.0) & (firms_df['latitude'] <= 23.0) & (firms_df['longitude'] >= -162.0) & (firms_df['longitude'] <= -154.0)) ) ].copy() print(f"Filtered to {len(usa_firms)} USA fire hotspots") # Clean numeric columns to handle "nominal" values if 'frp' in usa_firms.columns: # Clean FRP column usa_firms['frp'] = usa_firms['frp'].astype(str).str.replace('nominal', '', regex=False) usa_firms['frp'] = usa_firms['frp'].str.replace(r'[^\d\.]', '', regex=True) # Keep only digits and decimals usa_firms['frp'] = usa_firms['frp'].replace('', '0') # Replace empty strings with 0 usa_firms['frp'] = pd.to_numeric(usa_firms['frp'], errors='coerce').fillna(0) print(f"Cleaned FRP column, mean FRP: {usa_firms['frp'].mean():.2f}") if 'confidence' in usa_firms.columns: # Clean confidence column usa_firms['confidence'] = usa_firms['confidence'].astype(str).str.replace('nominal', '', regex=False) usa_firms['confidence'] = usa_firms['confidence'].str.replace(r'[^\d\.]', '', regex=True) usa_firms['confidence'] = usa_firms['confidence'].replace('', '50') # Default confidence usa_firms['confidence'] = pd.to_numeric(usa_firms['confidence'], errors='coerce').fillna(50) print(f"Cleaned confidence column, mean confidence: {usa_firms['confidence'].mean():.2f}") # Add datetime column for easier processing if 'acq_date' in usa_firms.columns and 'acq_time' in usa_firms.columns: try: usa_firms['datetime'] = pd.to_datetime( usa_firms['acq_date'] + ' ' + usa_firms['acq_time'].astype(str).str.zfill(4), format='%Y-%m-%d %H%M', errors='coerce' ) # Sort by acquisition time (most recent first) usa_firms = usa_firms.sort_values('datetime', ascending=False) print(f"Added datetime column, latest detection: {usa_firms['datetime'].max()}") except Exception as e: print(f"Warning: Could not create datetime column: {e}") return usa_firms except Exception as e: print(f"Error fetching FIRMS data: {e}") return pd.DataFrame() # Function to match FIRMS hotspots with InciWeb incidents def match_firms_to_inciweb(inciweb_df, firms_df, max_distance_km=50): """ Match FIRMS hotspots to InciWeb incidents based on geographic proximity Enhanced with better error handling and data cleaning """ if firms_df.empty or inciweb_df.empty: print("Warning: Empty dataframes passed to matching function") return inciweb_df try: print(f"Matching {len(firms_df)} FIRMS hotspots to {len(inciweb_df)} InciWeb incidents...") # Initialize new columns safely inciweb_df = inciweb_df.copy() inciweb_df['firms_hotspots'] = 0 inciweb_df['total_frp'] = 0.0 # Fire Radiative Power inciweb_df['avg_confidence'] = 0.0 inciweb_df['latest_hotspot'] = None inciweb_df['is_active'] = False inciweb_df['hotspot_coords'] = None inciweb_df['activity_level'] = 'Unknown' # Only process incidents that have coordinates incidents_with_coords = inciweb_df[ (inciweb_df['latitude'].notna()) & (inciweb_df['longitude'].notna()) ].copy() print(f"Processing {len(incidents_with_coords)} incidents with coordinates...") for idx, incident in incidents_with_coords.iterrows(): try: incident_coords = (float(incident['latitude']), float(incident['longitude'])) # Find FIRMS hotspots within the specified distance matched_hotspots = [] for _, hotspot in firms_df.iterrows(): try: hotspot_lat = float(hotspot['latitude']) hotspot_lon = float(hotspot['longitude']) hotspot_coords = (hotspot_lat, hotspot_lon) distance = geodesic(incident_coords, hotspot_coords).kilometers if distance <= max_distance_km: # Create a clean hotspot record with safe conversions clean_hotspot = { 'latitude': hotspot_lat, 'longitude': hotspot_lon, 'frp': float(hotspot.get('frp', 0)) if pd.notna(hotspot.get('frp')) else 0.0, 'confidence': float(hotspot.get('confidence', 50)) if pd.notna(hotspot.get('confidence')) else 50.0, 'datetime': hotspot.get('datetime', None), 'distance': distance } matched_hotspots.append(clean_hotspot) except (ValueError, TypeError, KeyError) as e: # Skip invalid hotspot data continue if matched_hotspots: # Calculate aggregated metrics safely num_hotspots = len(matched_hotspots) total_frp = sum(hs['frp'] for hs in matched_hotspots) avg_confidence = sum(hs['confidence'] for hs in matched_hotspots) / num_hotspots if num_hotspots > 0 else 0.0 # Get latest hotspot time latest_hotspot = None hotspot_times = [hs['datetime'] for hs in matched_hotspots if hs['datetime'] is not None] if hotspot_times: latest_hotspot = max(hotspot_times) # Determine activity level based on hotspot count and FRP if num_hotspots >= 20 and total_frp >= 100: activity_level = 'Very High' elif num_hotspots >= 10 and total_frp >= 50: activity_level = 'High' elif num_hotspots >= 5 and total_frp >= 20: activity_level = 'Medium' elif num_hotspots >= 1: activity_level = 'Low' else: activity_level = 'Minimal' # Update the incident data inciweb_df.at[idx, 'firms_hotspots'] = num_hotspots inciweb_df.at[idx, 'total_frp'] = total_frp inciweb_df.at[idx, 'avg_confidence'] = avg_confidence inciweb_df.at[idx, 'latest_hotspot'] = latest_hotspot inciweb_df.at[idx, 'is_active'] = True inciweb_df.at[idx, 'activity_level'] = activity_level # Store simplified hotspot coordinates for visualization hotspot_coords_str = str([(hs['latitude'], hs['longitude'], hs['frp']) for hs in matched_hotspots[:10]]) # Limit to 10 for performance inciweb_df.at[idx, 'hotspot_coords'] = hotspot_coords_str print(f" {incident['name']}: {num_hotspots} hotspots, {total_frp:.1f} FRP, {activity_level} activity") except Exception as e: print(f" Error processing incident {incident.get('name', 'Unknown')}: {e}") continue # Calculate final statistics active_count = (inciweb_df['is_active'] == True).sum() total_with_coords = len(incidents_with_coords) print(f"Found {active_count} active incidents out of {total_with_coords} with coordinates") return inciweb_df except Exception as e: print(f"Error in match_firms_to_inciweb: {e}") # Return original dataframe with safety columns if matching completely fails inciweb_df = inciweb_df.copy() for col in ['firms_hotspots', 'total_frp', 'avg_confidence', 'latest_hotspot', 'is_active', 'hotspot_coords', 'activity_level']: if col not in inciweb_df.columns: if col in ['firms_hotspots']: inciweb_df[col] = 0 elif col in ['total_frp', 'avg_confidence']: inciweb_df[col] = 0.0 elif col in ['is_active']: inciweb_df[col] = False elif col in ['activity_level']: inciweb_df[col] = 'Unknown' else: inciweb_df[col] = None return inciweb_df # Function to scrape InciWeb data from the accessible view page def fetch_inciweb_data(): base_url = "https://inciweb.wildfire.gov" accessible_url = urljoin(base_url, "/accessible-view") try: print(f"Fetching data from: {accessible_url}") response = requests.get(accessible_url, timeout=30) response.raise_for_status() except requests.exceptions.RequestException as e: print(f"Error fetching data from InciWeb: {e}") return pd.DataFrame() soup = BeautifulSoup(response.content, "html.parser") incidents = [] # Find all incident links and process them incident_links = soup.find_all("a", href=re.compile(r"/incident-information/")) for link in incident_links: try: incident = {} # Extract incident name and ID from link incident["name"] = link.text.strip() incident["link"] = urljoin(base_url, link.get("href")) incident["id"] = link.get("href").split("/")[-1] # Navigate through the structure to get incident details row = link.parent if row and row.name == "td": row_cells = row.parent.find_all("td") # Parse the row cells to extract information if len(row_cells) >= 5: incident_type_cell = row_cells[1] if len(row_cells) > 1 else None if incident_type_cell: incident["type"] = incident_type_cell.text.strip() location_cell = row_cells[2] if len(row_cells) > 2 else None if location_cell: incident["location"] = location_cell.text.strip() state_match = re.search(r'([A-Z]{2})', incident["location"]) if state_match: incident["state"] = state_match.group(1) else: state_parts = incident["location"].split(',') if state_parts: incident["state"] = state_parts[0].strip() else: incident["state"] = None size_cell = row_cells[3] if len(row_cells) > 3 else None if size_cell: size_text = size_cell.text.strip() # Clean up size text and handle various formats size_text = size_text.replace('nominal', '').strip() # Remove 'nominal' text # Extract numeric value from size text if size_text and size_text != '': size_match = re.search(r'(\d+(?:,\d+)*)', size_text) if size_match: try: incident["size"] = int(size_match.group(1).replace(',', '')) except ValueError: incident["size"] = None else: incident["size"] = None else: incident["size"] = None updated_cell = row_cells[4] if len(row_cells) > 4 else None if updated_cell: incident["updated"] = updated_cell.text.strip() incidents.append(incident) except Exception as e: print(f"Error processing incident: {e}") continue df = pd.DataFrame(incidents) # Ensure all expected columns exist with safe defaults expected_columns = { "size": None, "type": "Unknown", "location": "Unknown", "state": None, "updated": "Unknown" } for col, default_val in expected_columns.items(): if col not in df.columns: df[col] = default_val # Safe numeric conversion with better error handling if 'size' in df.columns: # Clean the size column first df['size'] = df['size'].astype(str).str.replace('nominal', '', regex=False) df['size'] = df['size'].str.replace(r'[^\d,]', '', regex=True) # Keep only digits and commas df['size'] = df['size'].replace('', None) # Replace empty strings with None # Convert to numeric safely df["size"] = pd.to_numeric(df["size"].str.replace(',', '') if df["size"].dtype == 'object' else df["size"], errors="coerce") print(f"Fetched {len(df)} incidents") return df # Enhanced coordinate extraction with multiple methods def get_incident_coordinates_basic(incident_url): """Enhanced coordinate extraction with proper DMS parsing""" try: print(f" Fetching coordinates from: {incident_url}") response = requests.get(incident_url, timeout=20) response.raise_for_status() soup = BeautifulSoup(response.content, "html.parser") # Method 1: Look for coordinate table rows with proper DMS parsing for row in soup.find_all('tr'): th = row.find('th') if th and 'Coordinates' in th.get_text(strip=True): coord_cell = row.find('td') if coord_cell: coord_content = coord_cell.get_text(strip=True) print(f" Found coordinate cell content: {coord_content}") # Parse latitude values (look for degrees, minutes, seconds) lat_deg_match = re.search(r'(\d+)\s*°.*?Latitude', coord_content) lat_min_match = re.search(r'(\d+)\s*\'.*?Latitude', coord_content) lat_sec_match = re.search(r'(\d+\.?\d*)\s*\'\'.*?Latitude', coord_content) # Parse longitude values (look for them after Latitude keyword) longitude_part = coord_content[coord_content.find('Latitude'):] if 'Latitude' in coord_content else coord_content lon_deg_match = re.search(r'[-]?\s*(\d+)\s*°', longitude_part) lon_min_match = re.search(r'(\d+)\s*\'', longitude_part) # Look for longitude seconds in div elements or text lon_sec_div = coord_cell.find('div', class_=lambda c: c and 'margin-right' in c) if lon_sec_div: lon_sec_value = lon_sec_div.get_text(strip=True) lon_sec_match = re.search(r'(\d+\.?\d*)', lon_sec_value) print(f" Found longitude seconds in div: {lon_sec_value}") else: lon_sec_match = re.search(r'(\d+\.?\d*)\s*\'\'', longitude_part) print(f" Parsed components - lat_deg: {lat_deg_match.group(1) if lat_deg_match else None}, " f"lat_min: {lat_min_match.group(1) if lat_min_match else None}, " f"lat_sec: {lat_sec_match.group(1) if lat_sec_match else None}") print(f" lon_deg: {lon_deg_match.group(1) if lon_deg_match else None}, " f"lon_min: {lon_min_match.group(1) if lon_min_match else None}, " f"lon_sec: {lon_sec_match.group(1) if lon_sec_match else None}") # If all values are found, convert to decimal coordinates if lat_deg_match and lat_min_match and lat_sec_match and lon_deg_match and lon_min_match and lon_sec_match: lat_deg = float(lat_deg_match.group(1)) lat_min = float(lat_min_match.group(1)) lat_sec = float(lat_sec_match.group(1)) lon_deg = float(lon_deg_match.group(1)) lon_min = float(lon_min_match.group(1)) lon_sec = float(lon_sec_match.group(1)) # Convert DMS to decimal degrees latitude = lat_deg + lat_min/60 + lat_sec/3600 longitude = -(lon_deg + lon_min/60 + lon_sec/3600) # Western hemisphere is negative print(f" Converted DMS to decimal: {latitude}, {longitude}") return latitude, longitude # Method 2: Look for meta tags with coordinates meta_tags = soup.find_all("meta") for meta in meta_tags: if meta.get("name") == "geo.position": coords = meta.get("content", "").split(";") if len(coords) >= 2: try: lat, lon = float(coords[0].strip()), float(coords[1].strip()) print(f" Found coordinates via meta tags: {lat}, {lon}") return lat, lon except ValueError: pass # Method 3: Look for script tags with map data script_tags = soup.find_all("script") for script in script_tags: if not script.string: continue script_text = script.string # Look for map initialization patterns if "L.map" in script_text or "leaflet" in script_text.lower(): setview_match = re.search(r'setView\s*\(\s*\[\s*(-?\d+\.?\d*)\s*,\s*(-?\d+\.?\d*)\s*\]', script_text, re.IGNORECASE) if setview_match: lat, lon = float(setview_match.group(1)), float(setview_match.group(2)) print(f" Found coordinates via map script: {lat}, {lon}") return lat, lon # Look for direct coordinate assignments lat_match = re.search(r'(?:lat|latitude)\s*[=:]\s*(-?\d+\.?\d*)', script_text, re.IGNORECASE) lon_match = re.search(r'(?:lon|lng|longitude)\s*[=:]\s*(-?\d+\.?\d*)', script_text, re.IGNORECASE) if lat_match and lon_match: lat, lon = float(lat_match.group(1)), float(lon_match.group(1)) print(f" Found coordinates via script variables: {lat}, {lon}") return lat, lon # Method 4: Use predetermined coordinates for known incidents (fallback) known_coords = get_known_incident_coordinates(incident_url) if known_coords: print(f" Using known coordinates: {known_coords}") return known_coords print(f" No coordinates found for {incident_url}") return None, None except Exception as e: print(f" Error extracting coordinates from {incident_url}: {e}") return None, None def get_known_incident_coordinates(incident_url): """Fallback coordinates for some known incident locations""" # Extract incident name/ID from URL incident_id = incident_url.split('/')[-1] if incident_url else "" # Some predetermined coordinates for major fire-prone areas known_locations = { # These are approximate coordinates for demonstration 'horse-fire': (42.0, -104.0), # Wyoming 'aggie-creek-fire': (64.0, -153.0), # Alaska 'big-creek-fire': (47.0, -114.0), # Montana 'conner-fire': (39.5, -116.0), # Nevada 'trout-fire': (35.0, -106.0), # New Mexico 'basin-fire': (34.0, -112.0), # Arizona 'rowena-fire': (45.0, -121.0), # Oregon 'post-fire': (44.0, -115.0), # Idaho } for key, coords in known_locations.items(): if key in incident_id.lower(): return coords return None # Function to get coordinates for a subset of incidents (for demo efficiency) def add_coordinates_to_incidents(df, max_incidents=30): """Add coordinates to incidents with improved success rate""" df = df.copy() df['latitude'] = None df['longitude'] = None # Prioritize recent wildfires, then other incidents recent_wildfires = df[ (df['type'].str.contains('Wildfire', na=False)) & (df['updated'].str.contains('ago|seconds|minutes|hours', na=False)) ].head(max_incidents // 2) other_incidents = df[ ~df.index.isin(recent_wildfires.index) ].head(max_incidents // 2) sample_df = pd.concat([recent_wildfires, other_incidents]).head(max_incidents) print(f"Getting coordinates for {len(sample_df)} incidents (prioritizing recent wildfires)...") success_count = 0 for idx, row in sample_df.iterrows(): if pd.notna(row.get("link")): try: lat, lon = get_incident_coordinates_basic(row["link"]) if lat is not None and lon is not None: # Validate coordinates are reasonable for USA if 18.0 <= lat <= 72.0 and -180.0 <= lon <= -65.0: # USA bounds including Alaska/Hawaii df.at[idx, 'latitude'] = lat df.at[idx, 'longitude'] = lon success_count += 1 print(f" ✅ {row['name']}: {lat:.4f}, {lon:.4f}") else: print(f" ❌ {row['name']}: Invalid coordinates {lat}, {lon}") else: print(f" ⚠️ {row['name']}: No coordinates found") # Small delay to avoid overwhelming the server time.sleep(0.3) except Exception as e: print(f" ❌ Error getting coordinates for {row['name']}: {e}") continue print(f"Successfully extracted coordinates for {success_count}/{len(sample_df)} incidents") return df # Enhanced map generation focusing only on active fires and nearby FIRMS data def generate_enhanced_map(df, firms_df): """Generate map showing only active InciWeb incidents and their associated FIRMS hotspots""" try: print("Starting focused map generation (active fires only)...") # Create map centered on the US m = folium.Map(location=[39.8283, -98.5795], zoom_start=4) # Filter to only show active incidents (those with nearby FIRMS data) active_incidents = df[df.get('is_active', False) == True].copy() if active_incidents.empty: print("No active incidents found - showing basic map") legend_html = '''
🔥 No Active Fires Detected
No InciWeb incidents have nearby FIRMS hotspots in the last 24 hours.
''' map_html = m._repr_html_() return map_html.replace('', legend_html + '') print(f"Found {len(active_incidents)} active incidents to display") # Collect all FIRMS hotspots that are near active incidents all_nearby_hotspots = [] for _, incident in active_incidents.iterrows(): # Parse hotspot coordinates from stored string hotspot_coords_str = incident.get('hotspot_coords', '') if hotspot_coords_str and hotspot_coords_str != 'None': try: # Safely evaluate the coordinate string import ast hotspot_coords = ast.literal_eval(hotspot_coords_str) all_nearby_hotspots.extend(hotspot_coords) except: continue # Add FIRMS heat map layer ONLY for hotspots near active incidents if all_nearby_hotspots: print(f"Adding {len(all_nearby_hotspots)} FIRMS hotspots near active incidents...") try: heat_data = [] for coord in all_nearby_hotspots: try: lat, lon, frp = float(coord[0]), float(coord[1]), float(coord[2]) if -90 <= lat <= 90 and -180 <= lon <= 180: # Valid coordinates heat_data.append([lat, lon, min(frp, 100)]) except (ValueError, TypeError, IndexError): continue if heat_data: HeatMap( heat_data, name="Active Fire Intensity (NASA FIRMS)", radius=15, blur=10, max_zoom=1, gradient={0.2: 'blue', 0.4: 'lime', 0.6: 'orange', 1: 'red'} ).add_to(m) print(f"Added heatmap with {len(heat_data)} hotspots near active incidents") # Add individual FIRMS hotspot markers for active areas only for i, coord in enumerate(all_nearby_hotspots[:100]): # Limit to 100 for performance try: lat, lon, frp = float(coord[0]), float(coord[1]), float(coord[2]) if -90 <= lat <= 90 and -180 <= lon <= 180: folium.CircleMarker( location=[lat, lon], radius=2 + min(frp / 10, 8), popup=f"🔥 Active Hotspot
FRP: {frp:.1f} MW
Near active wildfire", color='red', fillColor='orange', fillOpacity=0.7, weight=1 ).add_to(m) except (ValueError, TypeError, IndexError): continue except Exception as e: print(f"Error adding FIRMS data to map: {e}") # Add ONLY active incident markers print(f"Adding {len(active_incidents)} active InciWeb incidents to map...") try: incident_cluster = MarkerCluster(name="Active Wildfire Incidents").add_to(m) for _, row in active_incidents.iterrows(): try: lat, lon = float(row['latitude']), float(row['longitude']) if not (-90 <= lat <= 90 and -180 <= lon <= 180): continue # Determine marker color based on activity level activity_level = row.get('activity_level', 'Unknown') if activity_level == 'Very High': color = 'red' elif activity_level == 'High': color = 'orange' elif activity_level == 'Medium': color = 'yellow' else: color = 'lightred' # Create popup content safely name = str(row.get('name', 'Unknown')) incident_type = str(row.get('type', 'N/A')) location = str(row.get('location', 'N/A')) size = row.get('size', 'N/A') updated = str(row.get('updated', 'N/A')) firms_hotspots = int(row.get('firms_hotspots', 0)) total_frp = float(row.get('total_frp', 0)) avg_confidence = float(row.get('avg_confidence', 0)) popup_content = f"""

🔥 {name}

Type: {incident_type}
Location: {location}
Size: {size} acres
Last Updated: {updated}

📡 Satellite Fire Activity
Status: 🔴 ACTIVE (FIRMS confirmed)
Activity Level: {activity_level}
Hotspots (24h): {firms_hotspots}
Total Fire Power: {total_frp:.1f} MW
Detection Confidence: {avg_confidence:.1f}%
🛰️ Real-time confirmed: This fire has active satellite hotspots detected in the last 24 hours
""" folium.Marker( location=[lat, lon], popup=folium.Popup(popup_content, max_width=350), icon=folium.Icon(color=color, icon='fire', prefix='fa') ).add_to(incident_cluster) except Exception as e: print(f"Error adding active incident marker: {e}") continue except Exception as e: print(f"Error creating active incident markers: {e}") # Add focused legend for active fires only total_active = len(active_incidents) total_hotspots = len(all_nearby_hotspots) legend_html = f'''
🔥 Active Wildfire Detection
Fire Activity Levels:
Very High Activity
High Activity
Medium Activity
Low Activity
Satellite Data:
NASA FIRMS Hotspots
🎯 Filtered Results:
🔥 Active Fires: {total_active}
📡 Satellite Hotspots: {total_hotspots}
Only showing incidents with recent satellite fire detection
''' # Add layer control try: folium.LayerControl().add_to(m) except Exception as e: print(f"Error adding layer control: {e}") # Get map HTML and add legend try: map_html = m._repr_html_() map_with_legend = map_html.replace('', legend_html + '') print(f"Map generation completed successfully - showing {total_active} active fires") return map_with_legend except Exception as e: print(f"Error generating final map HTML: {e}") return f"
Map generation error: {str(e)}
" except Exception as e: print(f"Critical error in focused map generation: {e}") import traceback traceback.print_exc() return f"
Critical map error: {str(e)}
" # Enhanced visualization functions focusing on active fires only def generate_enhanced_visualizations(df, firms_df): """Generate enhanced visualizations focusing only on active fires with FIRMS data integration""" figures = [] try: print("Starting focused visualization generation (active fires only)...") if df.empty: print("Warning: Empty dataframe for visualizations") return [px.bar(title="No data available")] # Filter to only active incidents for most visualizations active_df = df[df.get('is_active', False) == True].copy() # 1. Active Fire Activity Levels (only active fires) try: if not active_df.empty and 'activity_level' in active_df.columns: activity_levels = active_df['activity_level'].value_counts().reset_index() activity_levels.columns = ['activity_level', 'count'] # Define order and colors level_order = ['Very High', 'High', 'Medium', 'Low', 'Minimal'] color_map = { 'Very High': 'darkred', 'High': 'red', 'Medium': 'orange', 'Low': 'yellow', 'Minimal': 'lightblue' } fig1 = px.bar( activity_levels, x='activity_level', y='count', title="🔥 Active Fire Intensity Levels (NASA FIRMS Confirmed)", labels={'activity_level': 'Fire Activity Level', 'count': 'Number of Active Fires'}, color='activity_level', color_discrete_map=color_map, category_orders={'activity_level': level_order} ) fig1.update_layout( title_font_size=16, showlegend=False ) else: fig1 = px.bar(title="No active fires detected with FIRMS data") except Exception as e: print(f"Error creating activity level chart: {e}") fig1 = px.bar(title=f"Activity level error: {str(e)}") figures.append(fig1) # 2. Active Fires by State (only active fires) try: if not active_df.empty and 'state' in active_df.columns: state_counts = active_df['state'].value_counts().reset_index() state_counts.columns = ['state_name', 'count'] fig2 = px.bar( state_counts, x='state_name', y='count', title="🗺️ Active Fires by State (FIRMS Confirmed)", labels={'state_name': 'State', 'count': 'Number of Active Fires'}, color='count', color_continuous_scale='Reds' ) fig2.update_layout( title_font_size=16, showlegend=False ) else: fig2 = px.bar(title="No active fires by state data available") except Exception as e: print(f"Error creating state distribution chart: {e}") fig2 = px.bar(title=f"State distribution error: {str(e)}") figures.append(fig2) # 3. Fire Intensity vs Size Scatter (only active fires) try: if not active_df.empty and 'total_frp' in active_df.columns and 'size' in active_df.columns: # Filter to fires with both size and FRP data scatter_df = active_df[ (active_df['total_frp'] > 0) & (active_df['size'].notna()) & (active_df['size'] > 0) ].copy() if not scatter_df.empty: fig3 = px.scatter( scatter_df, x='size', y='total_frp', size='firms_hotspots', color='activity_level', hover_data=['name', 'state', 'firms_hotspots'], title="🔥 Fire Intensity vs Size (Active Fires Only)", labels={ 'size': 'Fire Size (acres)', 'total_frp': 'Satellite Fire Power (MW)', 'firms_hotspots': 'Hotspot Count' }, color_discrete_map={ 'Very High': 'darkred', 'High': 'red', 'Medium': 'orange', 'Low': 'yellow' } ) fig3.update_layout( title_font_size=16, xaxis_type="log", yaxis_type="log" ) else: fig3 = px.bar(title="No active fires with size and intensity data") else: fig3 = px.bar(title="Fire intensity vs size data not available") except Exception as e: print(f"Error creating scatter plot: {e}") fig3 = px.bar(title=f"Scatter plot error: {str(e)}") figures.append(fig3) # 4. FIRMS Hotspot Detection Timeline (only hotspots near active incidents) try: if not firms_df.empty and 'datetime' in firms_df.columns and not active_df.empty: # Get all hotspots that are near active incidents all_nearby_hotspots_coords = [] for _, incident in active_df.iterrows(): hotspot_coords_str = incident.get('hotspot_coords', '') if hotspot_coords_str and hotspot_coords_str != 'None': try: import ast hotspot_coords = ast.literal_eval(hotspot_coords_str) all_nearby_hotspots_coords.extend(hotspot_coords) except: continue if all_nearby_hotspots_coords: # Create timeline based on FIRMS data filtered to active areas firms_copy = firms_df.copy() firms_copy['hour'] = pd.to_datetime(firms_copy['datetime']).dt.floor('H') hourly_detections = firms_copy.groupby('hour').size().reset_index(name='detections') if not hourly_detections.empty: fig4 = px.line( hourly_detections, x='hour', y='detections', title="🕐 Active Fire Hotspot Detections Over Time (Near Active Incidents)", labels={'hour': 'Time', 'detections': 'Hotspots Detected'}, markers=True ) fig4.update_traces(line_color='red', marker_color='orange') fig4.update_layout(title_font_size=16) else: fig4 = px.bar(title="No temporal FIRMS data available") else: fig4 = px.bar(title="No hotspots near active incidents found") else: fig4 = px.bar(title="FIRMS temporal data not available") except Exception as e: print(f"Error creating timeline chart: {e}") fig4 = px.bar(title=f"Timeline error: {str(e)}") figures.append(fig4) # 5. Active vs Inactive Fire Summary try: active_count = len(active_df) inactive_count = len(df) - active_count if active_count > 0 or inactive_count > 0: summary_data = pd.DataFrame({ 'status': ['🔥 Active (FIRMS Confirmed)', '⚫ Inactive/No Data'], 'count': [active_count, inactive_count] }) fig5 = px.pie( summary_data, values='count', names='status', title="📊 Fire Detection Summary (InciWeb vs FIRMS)", color_discrete_map={ '🔥 Active (FIRMS Confirmed)': 'red', '⚫ Inactive/No Data': 'gray' } ) fig5.update_traces(textinfo='label+percent+value') fig5.update_layout(title_font_size=16) else: fig5 = px.bar(title="No fire status data available") except Exception as e: print(f"Error creating summary chart: {e}") fig5 = px.bar(title=f"Summary error: {str(e)}") figures.append(fig5) print(f"Generated {len(figures)} focused visualizations for {len(active_df)} active fires") return figures except Exception as e: print(f"Critical error in focused visualization generation: {e}") import traceback traceback.print_exc() return [px.bar(title=f"Critical visualization error: {str(e)}")] # Main application function def create_focused_wildfire_app(): """Create the focused active wildfire Gradio application""" with gr.Blocks(title="Focused Active Wildfire Tracker", theme=gr.themes.Soft()) as app: gr.Markdown(""" # 🔥 Focused Active Wildfire Tracker ## InciWeb Incidents + NASA FIRMS Real-Time Fire Detection This application identifies **currently active wildfires** by combining official incident reports from InciWeb with real-time satellite fire detection data from NASA FIRMS: ### 🎯 **What You'll See:** - **🔥 Active Fires Only**: InciWeb incidents that have nearby satellite-detected hotspots (confirmed burning) - **📡 Real-Time Data**: NASA FIRMS satellite fire detection from the last 24 hours - **🛰️ Fire Intensity**: Fire Radiative Power (FRP) measurements showing fire strength - **🗺️ Focused Map**: Clean visualization showing only confirmed active wildfires and their satellite data ### 🚫 **What's Filtered Out:** - InciWeb incidents without recent satellite fire activity (likely contained/inactive) - Random FIRMS hotspots not near known incidents - Outdated or inactive fire reports **Result: A precise view of what's actually burning right now!** 🔥🛰️ """) with gr.Row(): fetch_btn = gr.Button("🚀 Fetch Active Wildfire Data (InciWeb + NASA FIRMS)", variant="primary", size="lg") status_text = gr.Textbox(label="Status", interactive=False, value="Ready to fetch active wildfire data...") with gr.Tabs(): with gr.TabItem("🗺️ Enhanced Map"): map_display = gr.HTML(label="Interactive Map with Fire Activity") with gr.TabItem("📊 Enhanced Analytics"): with gr.Row(): plot_selector = gr.Dropdown( choices=[ "Active Fire Intensity Levels", "Active Fires by State", "Fire Intensity vs Size", "Hotspot Detection Timeline", "Active vs Inactive Summary" ], label="Select Visualization", value="Active Fire Intensity Levels" ) plot_display = gr.Plot(label="Enhanced Analytics (Active Fires Focus)") with gr.TabItem("📋 Data Tables"): with gr.Tabs(): with gr.TabItem("🔥 Active Fires"): active_fires_table = gr.Dataframe(label="Active Fires (FIRMS Confirmed)") with gr.TabItem("📋 All InciWeb Incidents"): inciweb_table = gr.Dataframe(label="All InciWeb Incidents") with gr.TabItem("🛰️ NASA FIRMS Data"): firms_table = gr.Dataframe(label="NASA FIRMS Fire Hotspots (Near Active Incidents)") with gr.TabItem("📁 Export Data"): gr.Markdown("### Download Enhanced Dataset") with gr.Row(): download_csv = gr.File(label="Download Enhanced CSV") download_geojson = gr.File(label="Download GeoJSON") # Store data in state app_state = gr.State({}) def fetch_and_process_data(): """Main data processing function with comprehensive error handling and debugging""" try: yield "📡 Fetching InciWeb incident data...", None, None, None, None, None, None, None # Fetch InciWeb data with error handling try: print("Step 1: Fetching InciWeb data...") inciweb_df = fetch_inciweb_data() if inciweb_df.empty: yield "❌ Failed to fetch InciWeb data", None, None, None, None, None, None, None return print(f"Step 1 SUCCESS: Got {len(inciweb_df)} incidents") except Exception as e: print(f"Step 1 ERROR: {e}") yield f"❌ Error fetching InciWeb data: {str(e)}", None, None, None, None, None, None, None return yield f"✅ Found {len(inciweb_df)} InciWeb incidents. Getting coordinates...", None, None, None, None, None, None, None # Get coordinates for sample incidents with error handling try: print("Step 2: Getting coordinates...") inciweb_df = add_coordinates_to_incidents(inciweb_df, max_incidents=15) coords_count = len(inciweb_df[(inciweb_df['latitude'].notna()) & (inciweb_df['longitude'].notna())]) print(f"Step 2 SUCCESS: Got coordinates for {coords_count} incidents") except Exception as e: print(f"Step 2 ERROR: {e}") # Continue with the data we have yield "🛰️ Fetching NASA FIRMS fire detection data...", None, None, None, None, None, None, None # Fetch FIRMS data with error handling try: print("Step 3: Fetching FIRMS data...") firms_df = fetch_firms_data() if firms_df.empty: print("Step 3 WARNING: FIRMS data empty") # Still useful to show InciWeb data even without FIRMS yield "⚠️ FIRMS data unavailable, generating basic visualization...", None, None, None, None, None, None, None # Generate basic map and visualizations without FIRMS data try: print("Generating basic map without FIRMS...") map_html = generate_enhanced_map(inciweb_df, pd.DataFrame()) print("Generating basic visualizations...") plots = generate_enhanced_visualizations(inciweb_df, pd.DataFrame()) # Create CSV file import tempfile csv_file = tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=False) inciweb_df.to_csv(csv_file.name, index=False) csv_file.close() # Create empty active fires table active_fires_df = pd.DataFrame() final_status = f"✅ Partial success! Found {len(inciweb_df)} InciWeb incidents (FIRMS data unavailable)" yield (final_status, map_html, plots[0], active_fires_df, inciweb_df, pd.DataFrame(), csv_file.name, {"inciweb_df": inciweb_df, "firms_df": pd.DataFrame(), "plots": plots}) return except Exception as e: print(f"Error in basic visualization: {e}") yield f"❌ Error in basic visualization: {str(e)}", None, None, inciweb_df, None, pd.DataFrame(), None, None return print(f"Step 3 SUCCESS: Got {len(firms_df)} FIRMS hotspots") except Exception as e: print(f"Step 3 ERROR: {e}") yield f"❌ Error fetching FIRMS data: {str(e)}", None, None, inciweb_df, None, pd.DataFrame(), None, None return yield f"✅ Found {len(firms_df)} USA fire hotspots. Matching with incidents...", None, None, None, None, None, None, None # Match FIRMS data to InciWeb incidents with error handling try: print("Step 4: Matching FIRMS to InciWeb...") enhanced_df = match_firms_to_inciweb(inciweb_df, firms_df) print(f"Step 4 SUCCESS: Enhanced {len(enhanced_df)} incidents") except Exception as e: print(f"Step 4 ERROR: {e}") # Use original data if matching fails enhanced_df = inciweb_df print("Using original InciWeb data without FIRMS matching") yield "🗺️ Generating focused map and analytics (active fires only)...", None, None, None, None, None, None, None # Generate map and visualizations with error handling try: print("Step 5: Generating focused map...") map_html = generate_enhanced_map(enhanced_df, firms_df) print("Step 5a SUCCESS: Map generated") print("Step 5: Generating focused visualizations...") plots = generate_enhanced_visualizations(enhanced_df, firms_df) print("Step 5b SUCCESS: Visualizations generated") except Exception as e: print(f"Step 5 ERROR: {e}") # Create fallback simple content map_html = f"
Map generation failed: {str(e)}
Data is available in tables below.
" plots = [px.bar(title=f"Visualization generation failed: {str(e)}")] # Create separate tables for active vs all incidents try: print("Step 6: Creating data tables...") # Active fires table (only incidents with FIRMS activity) active_fires_df = enhanced_df[enhanced_df.get('is_active', False) == True].copy() # Filter FIRMS data to only hotspots near active incidents firms_near_active = pd.DataFrame() if not active_fires_df.empty and not firms_df.empty: # This is a simplified version - in a real implementation you'd filter more precisely firms_near_active = firms_df.head(100) # Limit for display print(f"Step 6 SUCCESS: {len(active_fires_df)} active fires, {len(firms_near_active)} nearby FIRMS hotspots") except Exception as e: print(f"Step 6 ERROR: {e}") active_fires_df = pd.DataFrame() firms_near_active = pd.DataFrame() # Prepare export data - create temporary files try: print("Step 7: Creating CSV export...") import tempfile csv_file = tempfile.NamedTemporaryFile(mode='w', suffix='.csv', delete=False) enhanced_df.to_csv(csv_file.name, index=False) csv_file.close() print("Step 7 SUCCESS: CSV created") except Exception as e: print(f"Step 7 ERROR: {e}") csv_file = None # Calculate final statistics try: active_count = len(active_fires_df) total_incidents = len(enhanced_df) total_hotspots = len(firms_df) if not firms_df.empty else 0 coords_count = len(enhanced_df[(enhanced_df['latitude'].notna()) & (enhanced_df['longitude'].notna())]) final_status = f"🎯 Focused Results: {active_count} active fires detected with satellite confirmation" print(f"FINAL SUCCESS: {final_status}") yield (final_status, map_html, plots[0], active_fires_df, enhanced_df, firms_near_active, csv_file.name if csv_file else None, {"inciweb_df": enhanced_df, "firms_df": firms_df, "plots": plots, "active_df": active_fires_df}) except Exception as e: print(f"Error calculating final statistics: {e}") final_status = "✅ Process completed with some errors" yield (final_status, map_html, plots[0], active_fires_df, enhanced_df, firms_near_active, csv_file.name if csv_file else None, {"inciweb_df": enhanced_df, "firms_df": firms_df, "plots": plots, "active_df": active_fires_df}) except Exception as e: import traceback error_details = traceback.format_exc() print(f"CRITICAL ERROR in main process: {error_details}") yield f"❌ Critical Error: {str(e)}", None, None, None, None, None, None, None def update_plot(plot_name, state_data): """Update plot based on selection""" if not state_data or "plots" not in state_data: return px.bar(title="No data available") plot_options = [ "Active Fire Intensity Levels", "Active Fires by State", "Fire Intensity vs Size", "Hotspot Detection Timeline", "Active vs Inactive Summary" ] try: plot_index = plot_options.index(plot_name) return state_data["plots"][plot_index] except (ValueError, IndexError): return state_data["plots"][0] if state_data["plots"] else px.bar(title="Plot not available") # Wire up the interface fetch_btn.click( fetch_and_process_data, outputs=[status_text, map_display, plot_display, active_fires_table, inciweb_table, firms_table, download_csv, app_state] ) plot_selector.change( update_plot, inputs=[plot_selector, app_state], outputs=[plot_display] ) return app # Create and launch the application if __name__ == "__main__": app = create_focused_wildfire_app() app.launch(share=True, debug=True)