File size: 10,547 Bytes
9c047e2
 
fbbf258
9e7f401
 
 
 
9c047e2
9e7f401
 
9c047e2
9e7f401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c047e2
9e7f401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c047e2
9e7f401
f32f693
9c047e2
d81cdbb
 
 
 
 
 
 
9e7f401
 
d81cdbb
 
 
 
9e7f401
 
d81cdbb
 
9c047e2
9e7f401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d81cdbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e7f401
 
 
 
 
 
9c047e2
9e7f401
 
9c047e2
9e7f401
 
 
 
 
9c047e2
9e7f401
 
 
 
 
 
 
 
 
9c047e2
9e7f401
 
3317091
9e7f401
 
 
 
 
 
 
 
 
 
8d978a8
9e7f401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c047e2
9e7f401
 
 
 
 
 
 
 
 
 
 
 
 
9c047e2
9e7f401
 
 
 
 
 
 
 
9c047e2
 
f32f693
9e7f401
 
 
 
 
 
 
 
 
 
 
 
 
 
f32f693
9e7f401
 
 
 
 
 
 
 
 
 
fbbf258
 
9e7f401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbbf258
9e7f401
fbbf258
9e7f401
 
 
 
 
 
fbbf258
9e7f401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbbf258
9c047e2
 
9e7f401
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
import gradio as gr
import requests
import folium
import os
import json
from datetime import datetime, timedelta
import pandas as pd

# Get API key from environment
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")

def create_map(lat=40.7128, lon=-74.0060):
    """Create a Folium map centered at given coordinates"""
    m = folium.Map(
        location=[lat, lon],
        zoom_start=10,
        tiles="OpenStreetMap"
    )
    
    # Add a marker for the selected location
    folium.Marker(
        [lat, lon],
        popup=f"Selected Location: {lat:.4f}, {lon:.4f}",
        tooltip="Click to select this location",
        icon=folium.Icon(color='red', icon='info-sign')
    ).add_to(m)
    
    return m._repr_html_()

def get_pollen_data(lat, lon, days=5):
    """Fetch pollen data from Google Pollen API"""
    if not GOOGLE_API_KEY:
        return "Error: Google API key not found. Please set GOOGLE_API_KEY as a secret."
    
    # Google Pollen API endpoint
    url = "https://pollen.googleapis.com/v1/forecast:lookup"
    
    # Calculate date range
    start_date = datetime.now()
    end_date = start_date + timedelta(days=days-1)
    
    params = {
        "key": GOOGLE_API_KEY,
        "location.longitude": lon,
        "location.latitude": lat,
        "days": days,
        "plantsDescription": True
    }
    
    try:
        response = requests.get(url, params=params)
        response.raise_for_status()
        data = response.json()
        
        # Debug: Print the structure to understand the API response
        print(f"API Response keys: {data.keys()}")
        if "dailyInfo" in data and len(data["dailyInfo"]) > 0:
            print(f"First day info keys: {data['dailyInfo'][0].keys()}")
            print(f"Date structure: {data['dailyInfo'][0].get('date', 'No date field')}")
        
        return data
    except requests.exceptions.RequestException as e:
        error_msg = f"Error fetching pollen data: {str(e)}"
        if hasattr(e, 'response') and e.response is not None:
            error_msg += f" (Status: {e.response.status_code})"
        return error_msg
    except json.JSONDecodeError as e:
        return f"Error parsing response: {str(e)}"
    except Exception as e:
        return f"Unexpected error: {str(e)}"

def format_pollen_data(data):
    """Format pollen data for display"""
    if isinstance(data, str):  # Error message
        return data, None
    
    if "dailyInfo" not in data:
        return "No pollen data available for this location.", None
    
    # Create formatted output
    output = []
    output.append("# 🌸 Pollen Forecast Report\n")
    
    # Location info if available
    if "regionInfo" in data:
        region = data["regionInfo"]
        output.append(f"**Location:** {region.get('displayName', 'Unknown')}\n")
    
    # Daily pollen data
    daily_data = []
    for day_info in data["dailyInfo"]:
        # Handle different date formats from the API
        date_info = day_info.get("date", {})
        
        if isinstance(date_info, dict):
            # If date is a dict, try to extract the date string
            if "year" in date_info and "month" in date_info and "day" in date_info:
                year = date_info["year"]
                month = date_info["month"]
                day = date_info["day"]
                date_obj = datetime(year, month, day)
            else:
                # Fallback to today's date if we can't parse
                date_obj = datetime.now()
        elif isinstance(date_info, str):
            # If it's already a string, parse it
            try:
                date_obj = datetime.strptime(date_info, "%Y-%m-%d")
            except ValueError:
                date_obj = datetime.now()
        else:
            # Fallback
            date_obj = datetime.now()
            
        formatted_date = date_obj.strftime("%B %d, %Y")
        
        output.append(f"## πŸ“… {formatted_date}\n")
        
        if "pollenTypeInfo" in day_info:
            pollen_types = day_info["pollenTypeInfo"]
            
            # Create a row for the dataframe
            row_data = {"Date": formatted_date}
            
            for pollen in pollen_types:
                pollen_type = pollen["code"].replace("_", " ").title()
                index_info = pollen.get("indexInfo", {})
                index_value = index_info.get("value", "N/A")
                category = index_info.get("category", "Unknown")
                
                # Add color coding based on category
                color_map = {
                    "VERY_LOW": "🟒",
                    "LOW": "🟑", 
                    "MEDIUM": "🟠",
                    "HIGH": "πŸ”΄",
                    "VERY_HIGH": "🟣"
                }
                color = color_map.get(category, "βšͺ")
                
                output.append(f"**{pollen_type}:** {color} {category} (Index: {index_value})")
                row_data[pollen_type] = f"{category} ({index_value})"
                
                # Add plant descriptions if available
                if "plantDescription" in pollen:
                    plants = pollen["plantDescription"]
                    if "plants" in plants:
                        plant_list = [plant["displayName"] for plant in plants["plants"][:3]]  # Show top 3
                        output.append(f"  - *Main sources: {', '.join(plant_list)}*")
                
                output.append("")
            
            daily_data.append(row_data)
        
        output.append("---\n")
    
    # Create DataFrame for tabular view
    df = None
    if daily_data:
        df = pd.DataFrame(daily_data)
    
    # Add legend
    output.append("\n## πŸ“Š Pollen Index Legend")
    output.append("🟒 Very Low | 🟑 Low | 🟠 Medium | πŸ”΄ High | 🟣 Very High\n")
    
    # Add tips
    output.append("## πŸ’‘ Tips")
    output.append("- Check pollen levels before outdoor activities")
    output.append("- Take allergy medications during high pollen days")
    output.append("- Keep windows closed during peak pollen times")
    output.append("- Shower and change clothes after being outdoors")
    
    return "\n".join(output), df

def update_location(lat, lon):
    """Update the map and fetch pollen data for new location"""
    if lat is None or lon is None:
        return create_map(), "Please select a location on the map.", None
    
    # Create new map
    new_map = create_map(lat, lon)
    
    # Get pollen data
    pollen_data = get_pollen_data(lat, lon)
    formatted_data, df = format_pollen_data(pollen_data)
    
    return new_map, formatted_data, df

# Create the Gradio interface
with gr.Blocks(title="🌸 Pollen Forecast Map", theme=gr.themes.Soft()) as app:
    gr.HTML("""
    <div style="text-align: center; padding: 20px;">
        <h1>🌸 Pollen Forecast Map</h1>
        <p>Click on the map to select a location and get detailed pollen forecasts powered by Google Pollen API</p>
    </div>
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.HTML("<h3>πŸ“ Location Selection</h3>")
            
            # Coordinate inputs
            lat_input = gr.Number(
                label="Latitude", 
                value=40.7128, 
                precision=6,
                info="Enter latitude or click on map"
            )
            lon_input = gr.Number(
                label="Longitude", 
                value=-74.0060, 
                precision=6,
                info="Enter longitude or click on map"
            )
            
            update_btn = gr.Button("πŸ”„ Update Location", variant="primary")
            
            # Preset locations
            gr.HTML("<h4>πŸ“ Quick Locations</h4>")
            with gr.Row():
                nyc_btn = gr.Button("πŸ™οΈ NYC", size="sm")
                la_btn = gr.Button("🌴 LA", size="sm") 
                chicago_btn = gr.Button("🌬️ Chicago", size="sm")
                miami_btn = gr.Button("πŸ–οΈ Miami", size="sm")
        
        with gr.Column(scale=2):
            # Map display
            map_html = gr.HTML(
                value=create_map(),
                label="Interactive Map"
            )
    
    with gr.Row():
        with gr.Column():
            # Pollen data output
            pollen_output = gr.Markdown(
                value="Select a location to view pollen forecast.",
                label="Pollen Forecast"
            )
            
            # Data table
            pollen_table = gr.Dataframe(
                label="Pollen Data Summary",
                visible=False
            )
    
    # Event handlers
    def set_nyc():
        return 40.7128, -74.0060
    
    def set_la():
        return 34.0522, -118.2437
    
    def set_chicago():
        return 41.8781, -87.6298
    
    def set_miami():
        return 25.7617, -80.1918
    
    # Button events
    update_btn.click(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    nyc_btn.click(
        fn=set_nyc,
        outputs=[lat_input, lon_input]
    ).then(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    la_btn.click(
        fn=set_la,
        outputs=[lat_input, lon_input]
    ).then(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    chicago_btn.click(
        fn=set_chicago,
        outputs=[lat_input, lon_input]
    ).then(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    miami_btn.click(
        fn=set_miami,
        outputs=[lat_input, lon_input]
    ).then(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    # Auto-update when coordinates change
    lat_input.change(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    lon_input.change(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    # Load initial data
    app.load(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )

if __name__ == "__main__":
    app.launch()