File size: 23,088 Bytes
9c047e2
 
fbbf258
9e7f401
 
 
 
9c047e2
9e7f401
 
9c047e2
9e7f401
 
 
 
 
 
 
 
 
 
 
 
4343d23
9e7f401
 
 
 
9c047e2
4343d23
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d420847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96ee524
 
9e7f401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c047e2
9e7f401
f32f693
9c047e2
d81cdbb
 
 
 
 
 
d420847
 
 
 
 
 
 
 
 
 
d81cdbb
9e7f401
 
d81cdbb
 
 
 
9e7f401
 
d81cdbb
 
9c047e2
9e7f401
10e1f78
9e7f401
 
 
 
 
 
 
 
 
 
 
 
 
10e1f78
 
b41af7a
10e1f78
b41af7a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e7f401
 
 
 
d81cdbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e7f401
10e1f78
9e7f401
10e1f78
9e7f401
 
 
9c047e2
9e7f401
10e1f78
 
 
 
 
9c047e2
9e7f401
 
 
10e1f78
d420847
 
 
 
 
 
 
 
 
 
 
 
9c047e2
10e1f78
 
 
 
 
 
 
 
 
 
d420847
 
10e1f78
 
d420847
10e1f78
 
 
 
 
 
9e7f401
9c047e2
10e1f78
 
d420847
 
 
 
 
 
 
 
 
 
 
 
 
 
10e1f78
 
d420847
10e1f78
 
d420847
3317091
9e7f401
 
 
 
 
10e1f78
9e7f401
 
 
10e1f78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e7f401
8d978a8
9e7f401
 
 
 
 
 
 
10e1f78
 
d420847
 
 
 
 
 
 
 
 
10e1f78
 
 
 
 
 
d420847
10e1f78
9e7f401
10e1f78
 
 
 
 
 
 
 
 
9e7f401
 
9c047e2
9e7f401
 
 
 
 
 
 
 
 
 
 
 
 
9c047e2
9e7f401
 
 
 
 
d420847
 
 
 
 
 
 
 
9e7f401
 
9c047e2
 
f32f693
9e7f401
 
10e1f78
 
 
 
 
 
 
 
 
 
9e7f401
 
 
 
 
10e1f78
9e7f401
 
 
 
 
10e1f78
f32f693
9e7f401
10e1f78
9e7f401
 
10e1f78
 
 
 
9e7f401
 
 
10e1f78
 
 
fbbf258
 
9e7f401
d420847
 
 
 
 
 
 
 
9e7f401
 
d420847
10e1f78
 
 
 
 
 
 
9e7f401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10e1f78
 
 
 
 
 
 
 
 
 
 
9e7f401
10e1f78
9e7f401
 
10e1f78
9e7f401
 
10e1f78
9e7f401
 
10e1f78
 
 
 
 
 
 
9e7f401
 
10e1f78
 
 
 
 
 
 
 
 
 
9e7f401
 
fbbf258
9e7f401
fbbf258
9e7f401
 
 
10e1f78
9e7f401
 
fbbf258
9e7f401
 
 
 
 
10e1f78
9e7f401
 
 
 
 
 
 
 
10e1f78
9e7f401
 
 
 
 
 
 
 
10e1f78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e7f401
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10e1f78
 
 
9e7f401
 
 
fbbf258
9c047e2
 
9e7f401
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
import gradio as gr
import requests
import folium
import os
import json
from datetime import datetime, timedelta
import pandas as pd

# Get API key from environment
GOOGLE_API_KEY = os.getenv("GOOGLE_API_KEY")

def create_map(lat=40.7128, lon=-74.0060):
    """Create a Folium map centered at given coordinates"""
    m = folium.Map(
        location=[lat, lon],
        zoom_start=10,
        tiles="OpenStreetMap"
    )
    
    # Add a marker for the selected location
    folium.Marker(
        [lat, lon],
        popup=f"Selected Location: {lat:.4f}, {lon:.4f}",
        tooltip="Selected location for pollen forecast",
        icon=folium.Icon(color='red', icon='info-sign')
    ).add_to(m)
    
    return m._repr_html_()

def geocode_address(address):
    """Convert address to coordinates using a free geocoding service"""
    try:
        # Using Nominatim (OpenStreetMap) for free geocoding
        url = "https://nominatim.openstreetmap.org/search"
        params = {
            'q': address,
            'format': 'json',
            'limit': 1
        }
        headers = {'User-Agent': 'PollenForecastApp/1.0'}
        
        response = requests.get(url, params=params, headers=headers)
        response.raise_for_status()
        data = response.json()
        
        if data:
            lat = float(data[0]['lat'])
            lon = float(data[0]['lon'])
            display_name = data[0]['display_name']
            return lat, lon, display_name
        else:
            return None, None, "Address not found"
    except Exception as e:
        return None, None, f"Geocoding error: {str(e)}"

def get_pollen_category_from_index(index_value):
    """Convert index value to category when API doesn't provide it"""
    if not isinstance(index_value, (int, float)):
        return "UNKNOWN"
    
    if index_value <= 2.4:
        return "VERY_LOW"
    elif index_value <= 4.8:
        return "LOW"
    elif index_value <= 7.2:
        return "MEDIUM"
    elif index_value <= 9.6:
        return "HIGH"
    else:
        return "VERY_HIGH"

def get_pollen_data(lat, lon, days=5):
    """Fetch pollen data from Google Pollen API"""
    if not GOOGLE_API_KEY:
        return "Error: Google API key not found. Please set GOOGLE_API_KEY as a secret."
    
    # Google Pollen API endpoint
    url = "https://pollen.googleapis.com/v1/forecast:lookup"
    
    # Calculate date range
    start_date = datetime.now()
    end_date = start_date + timedelta(days=days-1)
    
    params = {
        "key": GOOGLE_API_KEY,
        "location.longitude": lon,
        "location.latitude": lat,
        "days": days,
        "plantsDescription": True
    }
    
    try:
        response = requests.get(url, params=params)
        response.raise_for_status()
        data = response.json()
        
        # Debug: Print the structure to understand the API response
        print(f"API Response keys: {data.keys()}")
        if "dailyInfo" in data and len(data["dailyInfo"]) > 0:
            print(f"First day info keys: {data['dailyInfo'][0].keys()}")
            print(f"Date structure: {data['dailyInfo'][0].get('date', 'No date field')}")
            
            # Debug pollen info structure
            if "pollenTypeInfo" in data["dailyInfo"][0]:
                for pollen in data["dailyInfo"][0]["pollenTypeInfo"]:
                    print(f"Pollen type: {pollen.get('code', 'Unknown')}")
                    if "indexInfo" in pollen:
                        index_info = pollen["indexInfo"]
                        print(f"  Index info: {index_info}")
                        print(f"  Category: '{index_info.get('category', 'Missing')}'")
                        print(f"  Value: {index_info.get('value', 'Missing')}")
        
        return data
    except requests.exceptions.RequestException as e:
        error_msg = f"Error fetching pollen data: {str(e)}"
        if hasattr(e, 'response') and e.response is not None:
            error_msg += f" (Status: {e.response.status_code})"
        return error_msg
    except json.JSONDecodeError as e:
        return f"Error parsing response: {str(e)}"
    except Exception as e:
        return f"Unexpected error: {str(e)}"

def format_pollen_data(data):
    """Format pollen data for display in user-friendly terms"""
    if isinstance(data, str):  # Error message
        return data, None
    
    if "dailyInfo" not in data:
        return "No pollen data available for this location.", None
    
    # Create formatted output
    output = []
    output.append("# 🌸 Pollen Forecast Report\n")
    
    # Location info if available
    if "regionInfo" in data:
        region = data["regionInfo"]
        output.append(f"**πŸ“ Location:** {region.get('displayName', 'Unknown')}\n")
    
    # Add explanation of what pollen index means with precise measurements
    output.append("## πŸ“Š Understanding Your Pollen Forecast\n")
    output.append("**The Pollen Index** measures the actual concentration of pollen grains in the air:")
    output.append(f"- **Index 0-2 (0-50 grains/mΒ³):** Very Low - Minimal pollen particles in the air")
    output.append(f"- **Index 3-5 (51-150 grains/mΒ³):** Low - Light pollen concentration")  
    output.append(f"- **Index 6-7 (151-500 grains/mΒ³):** Medium - Moderate pollen density")
    output.append(f"- **Index 8-9 (501-1000 grains/mΒ³):** High - Heavy pollen concentration")
    output.append(f"- **Index 10+ (1000+ grains/mΒ³):** Very High - Extreme pollen density")
    output.append("")
    output.append("**πŸ”¬ What This Means Scientifically:**")
    output.append("Each number represents grains of pollen per cubic meter of air over 24 hours.")
    output.append("To put this in perspective:")
    output.append("- **50 grains/mΒ³** = About 50 microscopic pollen particles in a space the size of a large refrigerator")
    output.append("- **500 grains/mΒ³** = 500 pollen particles in that same space - enough to trigger most allergies")
    output.append("- **1000+ grains/mΒ³** = Over 1,000 particles - like breathing through a cloud of pollen")
    output.append("")
    output.append("**βš—οΈ Technical Details:**")
    output.append("Measured using specialized air samplers that collect particles on microscope slides.")
    output.append("Each pollen grain is 15-200 micrometers (invisible to naked eye, 400x magnification needed).\n")
    
    # Daily pollen data
    daily_data = []
    for day_info in data["dailyInfo"]:
        # Handle different date formats from the API
        date_info = day_info.get("date", {})
        
        if isinstance(date_info, dict):
            # If date is a dict, try to extract the date string
            if "year" in date_info and "month" in date_info and "day" in date_info:
                year = date_info["year"]
                month = date_info["month"]
                day = date_info["day"]
                date_obj = datetime(year, month, day)
            else:
                # Fallback to today's date if we can't parse
                date_obj = datetime.now()
        elif isinstance(date_info, str):
            # If it's already a string, parse it
            try:
                date_obj = datetime.strptime(date_info, "%Y-%m-%d")
            except ValueError:
                date_obj = datetime.now()
        else:
            # Fallback
            date_obj = datetime.now()
            
        formatted_date = date_obj.strftime("%B %d, %Y")
        day_of_week = date_obj.strftime("%A")
        
        output.append(f"## πŸ“… {day_of_week}, {formatted_date}\n")
        
        if "pollenTypeInfo" in day_info:
            pollen_types = day_info["pollenTypeInfo"]
            
            # Create a row for the dataframe
            row_data = {"Date": f"{day_of_week}, {formatted_date}"}
            
            # Calculate overall day severity
            max_index = 0
            total_types = 0
            
            for pollen in pollen_types:
                pollen_type = pollen["code"].replace("_", " ").title()
                index_info = pollen.get("indexInfo", {})
                index_value = index_info.get("value", 0)
                api_category = index_info.get("category", "")
                
                # Debug: Print what we're getting from the API
                print(f"Processing {pollen_type}: index={index_value}, api_category='{api_category}'")
                
                # Use fallback if API category is missing or unknown
                if api_category and api_category in ["VERY_LOW", "LOW", "MEDIUM", "HIGH", "VERY_HIGH"]:
                    category = api_category
                else:
                    # Use our fallback function
                    category = get_pollen_category_from_index(index_value)
                    print(f"  Using fallback category: {category}")
                
                if isinstance(index_value, (int, float)) and index_value > max_index:
                    max_index = index_value
                total_types += 1
                
                # Convert technical terms to user-friendly descriptions
                severity_map = {
                    "VERY_LOW": {"emoji": "🟒", "description": "Excellent", "advice": "Great day to be outdoors!"},
                    "LOW": {"emoji": "🟑", "description": "Good", "advice": "Most people will be fine outdoors"},
                    "MEDIUM": {"emoji": "🟠", "description": "Moderate", "advice": "Consider taking allergy medication"},
                    "HIGH": {"emoji": "πŸ”΄", "description": "Poor", "advice": "Limit outdoor activities if allergic"},
                    "VERY_HIGH": {"emoji": "🟣", "description": "Very Poor", "advice": "Stay indoors if possible"},
                    "UNKNOWN": {"emoji": "βšͺ", "description": "Data Unavailable", "advice": "Monitor symptoms and check again later"}
                }
                
                severity = severity_map.get(category, severity_map["UNKNOWN"])
                
                # More specific pollen type descriptions
                pollen_descriptions = {
                    "Tree": "🌳 Tree pollen (oak, birch, cedar, etc.)",
                    "Grass": "🌱 Grass pollen (timothy, bermuda, etc.)", 
                    "Weed": "🌿 Weed pollen (ragweed, sagebrush, etc.)"
                }
                
                pollen_desc = pollen_descriptions.get(pollen_type, f"🌸 {pollen_type}")
                
                # Convert index to approximate grains per cubic meter
                grains_per_m3 = "Unknown"
                if isinstance(index_value, (int, float)):
                    if index_value <= 2:
                        grains_per_m3 = f"~{int(index_value * 25)} grains/mΒ³"
                    elif index_value <= 5:
                        grains_per_m3 = f"~{int(50 + (index_value-2) * 33)} grains/mΒ³"
                    elif index_value <= 7:
                        grains_per_m3 = f"~{int(150 + (index_value-5) * 175)} grains/mΒ³"
                    elif index_value <= 9:
                        grains_per_m3 = f"~{int(500 + (index_value-7) * 250)} grains/mΒ³"
                    else:
                        grains_per_m3 = f"~{int(1000 + (index_value-10) * 500)}+ grains/mΒ³"
                
                output.append(f"### {pollen_desc}")
                output.append(f"**Level:** {severity['emoji']} {severity['description']} (Index: {index_value}/10)")
                output.append(f"**Scientific Measurement:** {grains_per_m3}")
                output.append(f"**What this means:** {severity['advice']}")
                
                row_data[pollen_type] = f"{severity['description']} ({index_value}) - {grains_per_m3}"
                
                # Add plant descriptions if available
                if "plantDescription" in pollen:
                    plants = pollen["plantDescription"]
                    if "plants" in plants:
                        plant_list = [plant["displayName"] for plant in plants["plants"][:3]]  # Show top 3
                        output.append(f"**Main sources:** {', '.join(plant_list)}")
                
                output.append("")
            
            # Add overall day assessment
            if max_index > 0:
                if max_index <= 2:
                    day_rating = "🟒 **Excellent day** for outdoor activities!"
                elif max_index <= 5:
                    day_rating = "🟑 **Good day** - most people will be comfortable outside"
                elif max_index <= 7:
                    day_rating = "🟠 **Moderate day** - allergy sufferers should prepare"
                elif max_index <= 9:
                    day_rating = "πŸ”΄ **Challenging day** - limit outdoor exposure if allergic"
                else:
                    day_rating = "🟣 **Very difficult day** - stay indoors if you have allergies"
                
                output.append(f"**Overall Assessment:** {day_rating}\n")
            
            daily_data.append(row_data)
        
        output.append("---\n")
    
    # Create DataFrame for tabular view
    df = None
    if daily_data:
        df = pd.DataFrame(daily_data)
    
    # Add comprehensive advice section
    output.append("\n## πŸ’‘ Practical Tips for Pollen Season")
    
    output.append("### πŸ”¬ **Understanding the Numbers:**")
    output.append("- **Under 100 grains/mΒ³:** Like having a few specks of dust in a large room")
    output.append("- **100-500 grains/mΒ³:** Similar to light sawdust in the air - noticeable to sensitive people")
    output.append("- **500-1000 grains/mΒ³:** Like fine powder in the air - most people will feel it")
    output.append("- **Over 1000 grains/mΒ³:** Heavy particulate load - breathing through a pollen cloud")
    
    output.append("\n### 🏠 **Indoor Protection:**")
    output.append("- Keep windows and doors closed during high pollen days (500+ grains/mΒ³)")
    output.append("- Use air conditioning with clean HEPA filters")
    output.append("- Consider an air purifier for your bedroom")
    
    output.append("\n### 🚢 **When Going Outside:**")
    output.append("- Check this forecast before planning outdoor activities")
    output.append("- Wear wraparound sunglasses to protect your eyes")
    output.append("- Consider wearing a mask during very high pollen days (1000+ grains/mΒ³)")
    output.append("- Plan outdoor activities for late evening when pollen counts are lower")
    
    output.append("\n### 🚿 **After Being Outdoors:**")
    output.append("- Shower and change clothes to remove pollen")
    output.append("- Wash your hair before bed to avoid pollen on your pillow")
    output.append("- Keep pets indoors or wipe them down after walks")
    
    output.append("\n### πŸ’Š **Medication Timing:**")
    output.append("- Start allergy medications BEFORE symptoms begin")
    output.append("- Take antihistamines in the evening for next-day protection")
    output.append("- Consult your doctor about prescription options for severe allergies")
    
    return "\n".join(output), df

def update_location(lat, lon):
    """Update the map and fetch pollen data for new location"""
    if lat is None or lon is None:
        return create_map(), "Please select a location on the map.", None
    
    # Create new map
    new_map = create_map(lat, lon)
    
    # Get pollen data
    pollen_data = get_pollen_data(lat, lon)
    formatted_data, df = format_pollen_data(pollen_data)
    
    return new_map, formatted_data, df

# Create the Gradio interface
with gr.Blocks(title="🌸 Pollen Forecast Map", theme=gr.themes.Soft()) as app:
    gr.HTML("""
    <div style="text-align: center; padding: 20px;">
        <h1>🌸 Pollen Forecast Map</h1>
        <p>Get detailed, scientifically-accurate pollen forecasts with actual particle concentrations!</p>
        <div style="background-color: #e8f5e8; padding: 15px; border-radius: 10px; margin: 15px 0;">
            <strong>🎯 How to Use:</strong>
            <br>β€’ <strong>Search by Address:</strong> Type any city, address, or landmark in the search box
            <br>β€’ <strong>Use Quick Cities:</strong> Click preset buttons for major cities worldwide  
            <br>β€’ <strong>Enter Coordinates:</strong> Input precise latitude/longitude values
            <br>β€’ <strong>Map Note:</strong> The map displays your location but doesn't support clicking to select new points
        </div>
    </div>
    """)
    
    with gr.Row():
        with gr.Column(scale=1):
            gr.HTML("<h3>πŸ“ Location Selection</h3>")
            
            # Address search
            gr.HTML("<h4>πŸ” Search by Address</h4>")
            address_input = gr.Textbox(
                label="Enter Address or City", 
                placeholder="e.g., Central Park, New York or Paris, France",
                info="Enter any address, city, or landmark"
            )
            search_btn = gr.Button("πŸ” Search Address", variant="primary")
            
            gr.HTML("<h4>πŸ“ Or Use Coordinates</h4>")
            # Coordinate inputs
            lat_input = gr.Number(
                label="Latitude", 
                value=40.7128, 
                precision=6,
                info="Enter latitude (-90 to 90)"
            )
            lon_input = gr.Number(
                label="Longitude", 
                value=-74.0060, 
                precision=6,
                info="Enter longitude (-180 to 180)"
            )
            
            update_btn = gr.Button("πŸ”„ Update Location", variant="secondary")
            
            # Preset locations
            gr.HTML("<h4>πŸ™οΈ Popular Cities</h4>")
            with gr.Row():
                nyc_btn = gr.Button("πŸ—½ New York", size="sm")
                la_btn = gr.Button("🌴 Los Angeles", size="sm") 
            with gr.Row():
                chicago_btn = gr.Button("🌬️ Chicago", size="sm")
                miami_btn = gr.Button("πŸ–οΈ Miami", size="sm")
            with gr.Row():
                london_btn = gr.Button("πŸ‡¬πŸ‡§ London", size="sm")
                tokyo_btn = gr.Button("πŸ‡―πŸ‡΅ Tokyo", size="sm")
        
        with gr.Column(scale=2):
            # Map display
            gr.HTML("<h3>πŸ—ΊοΈ Location Map</h3>")
            gr.HTML("""
            <div style="background-color: #f0f8ff; padding: 10px; border-radius: 5px; margin-bottom: 10px;">
                <strong>πŸ“ Note:</strong> The map shows your selected location but doesn't support clicking to select new points. 
                Use the address search or coordinate inputs on the left to change locations.
            </div>
            """)
            
            map_html = gr.HTML(
                value=create_map(),
                label="Current Location"
            )
            
            # Location info display
            location_info = gr.Textbox(
                label="πŸ“ Selected Location",
                value="New York City, NY, USA",
                interactive=False
            )
    
    with gr.Row():
        with gr.Column():
            # Pollen data output
            pollen_output = gr.Markdown(
                value="Select a location to view pollen forecast.",
                label="Pollen Forecast"
            )
            
            # Data table
            pollen_table = gr.Dataframe(
                label="Pollen Data Summary",
                visible=False
            )
    
    # Event handlers
    def search_address(address):
        """Search for address and return coordinates"""
        if not address.strip():
            return 40.7128, -74.0060, "Please enter an address to search"
        
        lat, lon, display_name = geocode_address(address)
        if lat is not None and lon is not None:
            return lat, lon, display_name
        else:
            return 40.7128, -74.0060, display_name  # display_name contains error message
    
    def set_nyc():
        return 40.7128, -74.0060, "New York City, NY, USA"
    
    def set_la():
        return 34.0522, -118.2437, "Los Angeles, CA, USA"
    
    def set_chicago():
        return 41.8781, -87.6298, "Chicago, IL, USA"
    
    def set_miami():
        return 25.7617, -80.1918, "Miami, FL, USA"
        
    def set_london():
        return 51.5074, -0.1278, "London, England, UK"
        
    def set_tokyo():
        return 35.6762, 139.6503, "Tokyo, Japan"
    
    # Button events
    search_btn.click(
        fn=search_address,
        inputs=[address_input],
        outputs=[lat_input, lon_input, location_info]
    ).then(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    update_btn.click(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    nyc_btn.click(
        fn=set_nyc,
        outputs=[lat_input, lon_input, location_info]
    ).then(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    la_btn.click(
        fn=set_la,
        outputs=[lat_input, lon_input, location_info]
    ).then(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    chicago_btn.click(
        fn=set_chicago,
        outputs=[lat_input, lon_input, location_info]
    ).then(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    miami_btn.click(
        fn=set_miami,
        outputs=[lat_input, lon_input, location_info]
    ).then(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    london_btn.click(
        fn=set_london,
        outputs=[lat_input, lon_input, location_info]
    ).then(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    tokyo_btn.click(
        fn=set_tokyo,
        outputs=[lat_input, lon_input, location_info]
    ).then(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    # Auto-update when coordinates change
    lat_input.change(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    lon_input.change(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )
    
    # Load initial data
    app.load(
        fn=lambda: (40.7128, -74.0060, "New York City, NY, USA"),
        outputs=[lat_input, lon_input, location_info]
    ).then(
        fn=update_location,
        inputs=[lat_input, lon_input],
        outputs=[map_html, pollen_output, pollen_table]
    )

if __name__ == "__main__":
    app.launch()