Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -53,27 +53,19 @@ else:
|
|
53 |
device_map={"": device},
|
54 |
)
|
55 |
|
56 |
-
|
57 |
-
# def generate_prompt(instruction, input=None):
|
58 |
-
# if input:
|
59 |
-
# return f"""Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
|
60 |
-
# ### Instruction:
|
61 |
-
# {instruction}
|
62 |
-
# ### Input:
|
63 |
-
# {input}
|
64 |
-
# ### Response:"""
|
65 |
-
# else:
|
66 |
-
# return f"""Below is an instruction that describes a task. Write a response that appropriately completes the request.
|
67 |
-
# ### Instruction:
|
68 |
-
# {instruction}
|
69 |
-
# ### Response:"""
|
70 |
-
|
71 |
if device != "cpu":
|
72 |
model.half()
|
73 |
model.eval()
|
74 |
if torch.__version__ >= "2":
|
75 |
model = torch.compile(model)
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
|
78 |
def evaluate(
|
79 |
instruction,
|
@@ -85,15 +77,27 @@ def evaluate(
|
|
85 |
num_beams=4
|
86 |
max_new_tokens=128
|
87 |
prompt = instruction
|
|
|
88 |
inputs = tokenizer(prompt, return_tensors="pt")
|
89 |
input_ids = inputs["input_ids"].to(device)
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
# with torch.cuda.amp.autocast():
|
98 |
# output_tokens = model.generate(**inputs, generation_config=generation_config)
|
99 |
# output = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
|
|
53 |
device_map={"": device},
|
54 |
)
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
if device != "cpu":
|
57 |
model.half()
|
58 |
model.eval()
|
59 |
if torch.__version__ >= "2":
|
60 |
model = torch.compile(model)
|
61 |
|
62 |
+
def check_number(text):
|
63 |
+
count = 0
|
64 |
+
for word in text.split():
|
65 |
+
if word.isnumeric():
|
66 |
+
count += 1
|
67 |
+
|
68 |
+
return count >= 2
|
69 |
|
70 |
def evaluate(
|
71 |
instruction,
|
|
|
77 |
num_beams=4
|
78 |
max_new_tokens=128
|
79 |
prompt = instruction
|
80 |
+
|
81 |
inputs = tokenizer(prompt, return_tensors="pt")
|
82 |
input_ids = inputs["input_ids"].to(device)
|
83 |
+
|
84 |
+
if check_number(prompt):
|
85 |
+
generation_config = GenerationConfig(
|
86 |
+
temperature=temperature,
|
87 |
+
top_p=top_p,
|
88 |
+
top_k=top_k,
|
89 |
+
num_beams=num_beams,
|
90 |
+
**kwargs,
|
91 |
+
)
|
92 |
+
else:
|
93 |
+
generation_config = GenerationConfig(
|
94 |
+
temperature=temperature,
|
95 |
+
top_p=top_p,
|
96 |
+
top_k=top_k,
|
97 |
+
do_sample = True,
|
98 |
+
**kwargs,
|
99 |
+
)
|
100 |
+
|
101 |
# with torch.cuda.amp.autocast():
|
102 |
# output_tokens = model.generate(**inputs, generation_config=generation_config)
|
103 |
# output = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|