Spaces:
Runtime error
Runtime error
Commit
·
bfb8cb9
1
Parent(s):
d3a3d62
:lipstick: style
Browse files
app.py
CHANGED
|
@@ -17,6 +17,7 @@ COLORS = [
|
|
| 17 |
[0.301, 0.745, 0.933],
|
| 18 |
]
|
| 19 |
|
|
|
|
| 20 |
@st.cache(allow_output_mutation=True)
|
| 21 |
def get_hf_components(model_name_or_path):
|
| 22 |
feature_extractor = DetrFeatureExtractor.from_pretrained(model_name_or_path)
|
|
@@ -24,10 +25,12 @@ def get_hf_components(model_name_or_path):
|
|
| 24 |
model.eval()
|
| 25 |
return feature_extractor, model
|
| 26 |
|
|
|
|
| 27 |
@st.cache
|
| 28 |
def get_img_from_url(url):
|
| 29 |
return Image.open(requests.get(url, stream=True).raw)
|
| 30 |
|
|
|
|
| 31 |
def fig2img(fig):
|
| 32 |
buf = io.BytesIO()
|
| 33 |
fig.savefig(buf)
|
|
@@ -54,6 +57,7 @@ def visualize_prediction(pil_img, output_dict, threshold=0.7, id2label=None):
|
|
| 54 |
plt.axis("off")
|
| 55 |
return fig2img(plt.gcf())
|
| 56 |
|
|
|
|
| 57 |
def make_prediction(img, feature_extractor, model):
|
| 58 |
inputs = feature_extractor(img, return_tensors="pt")
|
| 59 |
outputs = model(**inputs)
|
|
@@ -61,6 +65,7 @@ def make_prediction(img, feature_extractor, model):
|
|
| 61 |
processed_outputs = feature_extractor.post_process(outputs, img_size)
|
| 62 |
return processed_outputs[0]
|
| 63 |
|
|
|
|
| 64 |
def main():
|
| 65 |
option = st.selectbox("Which model should we use?", ("facebook/detr-resnet-50", "facebook/detr-resnet-101"))
|
| 66 |
feature_extractor, model = get_hf_components(option)
|
|
@@ -72,5 +77,5 @@ def main():
|
|
| 72 |
st.image(viz_img)
|
| 73 |
|
| 74 |
|
| 75 |
-
if __name__ ==
|
| 76 |
main()
|
|
|
|
| 17 |
[0.301, 0.745, 0.933],
|
| 18 |
]
|
| 19 |
|
| 20 |
+
|
| 21 |
@st.cache(allow_output_mutation=True)
|
| 22 |
def get_hf_components(model_name_or_path):
|
| 23 |
feature_extractor = DetrFeatureExtractor.from_pretrained(model_name_or_path)
|
|
|
|
| 25 |
model.eval()
|
| 26 |
return feature_extractor, model
|
| 27 |
|
| 28 |
+
|
| 29 |
@st.cache
|
| 30 |
def get_img_from_url(url):
|
| 31 |
return Image.open(requests.get(url, stream=True).raw)
|
| 32 |
|
| 33 |
+
|
| 34 |
def fig2img(fig):
|
| 35 |
buf = io.BytesIO()
|
| 36 |
fig.savefig(buf)
|
|
|
|
| 57 |
plt.axis("off")
|
| 58 |
return fig2img(plt.gcf())
|
| 59 |
|
| 60 |
+
|
| 61 |
def make_prediction(img, feature_extractor, model):
|
| 62 |
inputs = feature_extractor(img, return_tensors="pt")
|
| 63 |
outputs = model(**inputs)
|
|
|
|
| 65 |
processed_outputs = feature_extractor.post_process(outputs, img_size)
|
| 66 |
return processed_outputs[0]
|
| 67 |
|
| 68 |
+
|
| 69 |
def main():
|
| 70 |
option = st.selectbox("Which model should we use?", ("facebook/detr-resnet-50", "facebook/detr-resnet-101"))
|
| 71 |
feature_extractor, model = get_hf_components(option)
|
|
|
|
| 77 |
st.image(viz_img)
|
| 78 |
|
| 79 |
|
| 80 |
+
if __name__ == "__main__":
|
| 81 |
main()
|