Spaces:
Runtime error
Runtime error
import pandas as pd | |
from utils import normalize_text | |
import streamlit as st | |
### Data paths | |
# WIKIPEDIA_PATH = "./kensho_en_wiki_typing_technical.csv" | |
# WIKIDATA_PATH = "./wikidata_ss_processed.csv" | |
# REBEL_INFER_PATH = "./rebel_inference_processed_ss.csv" | |
# ENTITY_LINKING_PATH = "./linking_df_technical_min.csv" | |
relation_to_id = { | |
"uses": 2283, | |
"has_use": 366, | |
"part_of": 361, | |
"has_part": 527, | |
"made_from_material": 186 | |
} | |
st.title("Materials use case search app") | |
# User Input | |
input_text = st.text_input( | |
label="Enter the name of a material i.e steel, sand, plastic, etc and press Enter", | |
value="steel", | |
key="ent", | |
) | |
st.write("preparing data ...") | |
# Wikipedia metadata | |
def get_wiki_df(path="./kensho_en_wiki_typing_technical.csv"): | |
wiki_df = pd.read_csv(path) | |
# filter out technical articles | |
exclude_ids = set(wiki_df[(wiki_df.exclude == True) | (wiki_df.technical == False)].page_id.to_list()) | |
include_skpes = set(wiki_df[wiki_df.page_id.apply(lambda x: x not in exclude_ids)].skpe_id.to_list()) | |
skpe_to_wikidata = dict(zip(wiki_df.skpe_id.to_list(), wiki_df.item_id.to_list())) | |
wiki_df = wiki_df.drop(columns=['Unnamed: 0', 'en_probs', 'exclude']) | |
wiki_df = wiki_df.rename(columns={'title_x': 'en_title'}) | |
return wiki_df, include_skpes, skpe_to_wikidata | |
wiki_df, include_skpes, skpe_to_wikidata = get_wiki_df() | |
# KG data source 1: Wikidata | |
def get_wikidata_df(path="./wikidata_ss_processed.csv"): | |
wikidata_df = pd.read_csv(path) | |
# filter technical wikidata | |
wikidata_df = wikidata_df[wikidata_df.apply(lambda x: x.source_skpe in include_skpes and x.target_skpe in include_skpes, axis=1)] | |
wikidata_df['source_wikidata'] = wikidata_df.source_skpe.apply(lambda x: skpe_to_wikidata[x]) | |
wikidata_df['target_wikidata'] = wikidata_df.target_skpe.apply(lambda x: skpe_to_wikidata[x]) | |
wikidata_df = wikidata_df.drop(columns=['source_skpe', 'target_skpe']) | |
wikidata_df['source'] = 'wikidata' | |
return wikidata_df | |
wikidata_df = get_wikidata_df() | |
def get_rebel_infer_df(path="./rebel_inference_processed_ss.csv"): | |
rebel_infer_df = pd.read_csv(path) | |
# filter technical | |
rebel_infer_df = rebel_infer_df[rebel_infer_df.apply(lambda x: type(x.source_skpe_id) == str and type(x.target_skpe_id) == str, axis=1)] | |
rebel_infer_df = rebel_infer_df[rebel_infer_df.apply(lambda x: x.source_skpe_id in skpe_to_wikidata.keys() and x.target_skpe_id in skpe_to_wikidata.keys(), axis=1)] | |
rebel_infer_df['source_wikidata'] = rebel_infer_df.source_skpe_id.apply(lambda x: skpe_to_wikidata[x]) | |
rebel_infer_df['target_wikidata'] = rebel_infer_df.target_skpe_id.apply(lambda x: skpe_to_wikidata[x]) | |
# rebel_infer_df['title_page_id'] = rebel_infer_df.page_skpe_id.apply(lambda x: skpe_to_wikidata[x]) | |
rebel_infer_df = rebel_infer_df.drop(columns=['instance_id', 'source_text', 'target_text', 'page_skpe_id', 'source_skpe_id', 'target_skpe_id']) | |
rebel_infer_df = rebel_infer_df.rename(columns={'source_skpe_id': 'source_skpe', 'target_skpe_id': 'target_skpe', 'source': 'source_en', 'target': 'target_en'}) | |
rebel_infer_df = rebel_infer_df[rebel_infer_df.source_wikidata != rebel_infer_df.target_wikidata] | |
rebel_infer_df['source'] = 'rebel_wikipedia' | |
return rebel_infer_df | |
rebel_infer_df = get_rebel_infer_df() | |
kg_df = pd.concat([wikidata_df, rebel_infer_df]) | |
def get_entity_linking_df(path="./linking_df_technical_min.csv"): | |
linking_df = pd.read_csv(path) | |
return linking_df | |
st.write("matching input text ...") | |
linking_df = get_entity_linking_df() | |
# normalise and match | |
text_norm = normalize_text(input_text) | |
match_df = linking_df[linking_df.text == text_norm] | |
match_df = match_df[match_df.skpe_id.apply(lambda x: x in skpe_to_wikidata.keys())] | |
match_df['wikidata_id'] = match_df.skpe_id.apply(lambda x: skpe_to_wikidata[x]) | |
# top match skpe | |
if len(match_df) > 0: | |
top_wikidata = match_df.wikidata_id.mode()[0] | |
all_wikidata = set(match_df.wikidata_id.to_list()) | |
wikidata_to_count = dict(match_df.wikidata_id.value_counts()) | |
# Match list | |
wiki_match_df = wiki_df[wiki_df.item_id.apply(lambda x: x in all_wikidata)].copy() | |
wiki_match_df['link_score'] = wiki_match_df['item_id'].apply(lambda x: wikidata_to_count[x] / sum(wikidata_to_count.values())) | |
wiki_match_df = wiki_match_df.sort_values(by='link_score', ascending=False) | |
# show similar results | |
st.write(f"Found following matches for the term {input_text}") | |
wiki_match_df.sort_values(by='views', ascending=False)[:5] | |
# proceeding with top match | |
st.write("Performing use case extraction for the following top match ...") | |
wiki_df[wiki_df.item_id.apply(lambda x: x == top_wikidata)] | |
# Stuff that are made out of input | |
made_of_df = kg_df[(kg_df.relation == 'made_from_material') & (kg_df.target_wikidata == top_wikidata)].copy() | |
# made_of_list = made_of_df.source_wikidata.to_list() | |
if len(made_of_df) > 0: | |
st.write(f"Discovered following entities made out of {input_text}") | |
made_of_df[['source_ja', 'source_en', 'relation', 'target_ja', 'target_en', 'source', 'page_title']] | |
st.write("Extracting knowledge graph paths ...") | |
all_paths = [] | |
# iterate over first rows | |
for first_edge in made_of_df.itertuples(): | |
first_item = first_edge.source_wikidata | |
# applications of stuff made out of first item | |
use_df = kg_df[((kg_df.relation == 'has_use') & (kg_df.source_wikidata == first_item)) | ((kg_df.relation == 'uses') & (kg_df.target_wikidata == first_item))] | |
# add all 2 len paths | |
for second_edge in use_df.itertuples(): | |
all_paths.append([first_edge, second_edge]) | |
# expand to part of | |
# applications of stuff made out of steel # 1 | |
part_df = kg_df[((kg_df.relation == 'has_part') & (kg_df.target_wikidata == first_item)) | (kg_df.relation == 'part_of') & (kg_df.source_wikidata == first_item)] | |
# iterate over all parts of product | |
for second_edge in part_df.itertuples(): | |
# select second item | |
second_item = second_edge.source_wikidata if second_edge.relation == 'has_part' else second_edge.target_wikidata | |
# get uses of second item | |
use_df = kg_df[((kg_df.relation == 'has_use') & (kg_df.source_wikidata == second_item)) | ((kg_df.relation == 'uses') & (kg_df.target_wikidata == second_item))] | |
# add all 3 len paths | |
for third_edge in use_df.itertuples(): | |
all_paths.append([first_edge, second_edge, third_edge]) | |
if len(all_paths) > 0: | |
st.write(f"Found {len(all_paths)} knowledge graph paths relevant to use cases of {input_text}") | |
st.write("------") | |
# print all paths | |
for i, path in enumerate(all_paths): | |
material = path[0].target_en | |
material_wikidata = path[0].target_wikidata | |
material_url = f"https://www.wikidata.org/wiki/Q{material_wikidata}" | |
use_case = path[-1].source_en if path[-1].relation == 'uses' else path[-1].target_en | |
use_case_wikidata = path[-1].source_wikidata if path[-1].relation == 'uses' else path[-1].target_wikidata | |
use_case_url = f"https://www.wikidata.org/wiki/Q{use_case_wikidata}" | |
st.write(f"**Reasoning Path {i+1}:**") | |
for edge in path: | |
source_url = f"https://www.wikidata.org/wiki/Q{edge.source_wikidata}" | |
target_url = f"https://www.wikidata.org/wiki/Q{edge.target_wikidata}" | |
relation_url = f"https://www.wikidata.org/wiki/Property:P{relation_to_id[edge.relation]}" | |
st.markdown(f"[{edge.source_en}]({source_url}) --[{edge.relation}]({relation_url})--> [{edge.target_en}]({target_url}) (source: {edge.source})") | |
st.write("**Conclusion:**") | |
st.write(f"[{material}]({material_url}) is useful for [{use_case}]({use_case_url})") | |
st.write("------") | |
else: | |
st.write("Found no knowledge graph paths relevant to use cases") | |
else: | |
st.write("Found no entities that are made from {input_text}") | |
else: | |
st.write("no matches") |