nayanBhiwapurkar commited on
Commit
693770d
·
verified ·
1 Parent(s): 61a2755

Initial commit app.py

Browse files
Files changed (1) hide show
  1. app.py +64 -0
app.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from PIL import Image, ImageFilter
3
+ import numpy as np
4
+ import cv2
5
+ import torch
6
+ from transformers import DPTFeatureExtractor, DPTForDepthEstimation
7
+
8
+ # Load model and feature extractor
9
+ feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
10
+ model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
11
+
12
+ # Gaussian Blur function
13
+ def apply_gaussian_blur(image, blur_radius):
14
+ return image.filter(ImageFilter.GaussianBlur(blur_radius))
15
+
16
+ # Lens Blur function
17
+ def apply_lens_blur(image):
18
+ # Get depth map
19
+ inputs = feature_extractor(images=image, return_tensors="pt")
20
+ with torch.no_grad():
21
+ outputs = model(**inputs)
22
+ depth_map = outputs.predicted_depth.squeeze().cpu().numpy()
23
+ depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) * 15
24
+ depth_map_resized = cv2.resize(depth_map, (image.width, image.height))
25
+ depth_map_resized = 15 - depth_map_resized
26
+
27
+ # Convert to OpenCV format
28
+ image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
29
+ blurred_image = np.zeros_like(image_cv, dtype=np.float32)
30
+
31
+ for blur_radius in range(1, 16):
32
+ blurred_layer = cv2.GaussianBlur(image_cv, (0, 0), sigmaX=blur_radius)
33
+ mask = ((depth_map_resized >= (blur_radius - 1)) & (depth_map_resized < blur_radius)).astype(np.float32)
34
+ mask = cv2.merge([mask] * 3)
35
+ blurred_image += blurred_layer * mask
36
+
37
+ blurred_image = np.clip(blurred_image, 0, 255).astype(np.uint8)
38
+ return Image.fromarray(cv2.cvtColor(blurred_image, cv2.COLOR_BGR2RGB))
39
+
40
+ # Gradio app interface
41
+ def process_image(image, effect, blur_radius):
42
+ if effect == "Gaussian Blur":
43
+ return apply_gaussian_blur(image, blur_radius)
44
+ elif effect == "Lens Blur":
45
+ return apply_lens_blur(image)
46
+ else:
47
+ return image
48
+
49
+ # Gradio Interface
50
+ with gr.Blocks() as demo:
51
+ gr.Markdown("# Gaussian and Lens Blur Effects")
52
+ with gr.Row():
53
+ with gr.Column():
54
+ uploaded_image = gr.Image(type="pil")
55
+ effect = gr.Radio(["Gaussian Blur", "Lens Blur"], value="Gaussian Blur", label="Effect")
56
+ blur_radius = gr.Slider(1, 15, value=5, step=1, label="Blur Radius (for Gaussian Blur)")
57
+ submit_button = gr.Button("Apply Effect")
58
+ with gr.Column():
59
+ output_image = gr.Image(type="pil", label="Processed Image")
60
+
61
+ submit_button.click(process_image, inputs=[uploaded_image, effect, blur_radius], outputs=output_image)
62
+
63
+ # Launch the app
64
+ demo.launch()