import gradio as gr from PIL import Image, ImageFilter import numpy as np import cv2 import torch from transformers import DPTFeatureExtractor, DPTForDepthEstimation # Load model and feature extractor feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large") model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large") # Gaussian Blur function def apply_gaussian_blur(image, blur_radius): return image.filter(ImageFilter.GaussianBlur(blur_radius)) # Lens Blur function def apply_lens_blur(image): # Get depth map inputs = feature_extractor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) depth_map = outputs.predicted_depth.squeeze().cpu().numpy() depth_map = (depth_map - depth_map.min()) / (depth_map.max() - depth_map.min()) * 15 depth_map_resized = cv2.resize(depth_map, (image.width, image.height)) depth_map_resized = 15 - depth_map_resized # Convert to OpenCV format image_cv = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) blurred_image = np.zeros_like(image_cv, dtype=np.float32) for blur_radius in range(1, 16): blurred_layer = cv2.GaussianBlur(image_cv, (0, 0), sigmaX=blur_radius) mask = ((depth_map_resized >= (blur_radius - 1)) & (depth_map_resized < blur_radius)).astype(np.float32) mask = cv2.merge([mask] * 3) blurred_image += blurred_layer * mask blurred_image = np.clip(blurred_image, 0, 255).astype(np.uint8) return Image.fromarray(cv2.cvtColor(blurred_image, cv2.COLOR_BGR2RGB)) # Gradio app interface def process_image(image, effect, blur_radius): if effect == "Gaussian Blur": return apply_gaussian_blur(image, blur_radius) elif effect == "Lens Blur": return apply_lens_blur(image) else: return image # Gradio Interface with gr.Blocks() as demo: gr.Markdown("# Gaussian and Lens Blur Effects") with gr.Row(): with gr.Column(): uploaded_image = gr.Image(type="pil") effect = gr.Radio(["Gaussian Blur", "Lens Blur"], value="Gaussian Blur", label="Effect") blur_radius = gr.Slider(1, 15, value=5, step=1, label="Blur Radius (for Gaussian Blur)") submit_button = gr.Button("Apply Effect") with gr.Column(): output_image = gr.Image(type="pil", label="Processed Image") submit_button.click(process_image, inputs=[uploaded_image, effect, blur_radius], outputs=output_image) # Launch the app demo.launch()