Spaces:
Runtime error
Runtime error
error-analysis
Browse files- LICENSE +201 -0
- README.md +1 -13
- amazon_polarity.test.parquet +3 -0
- app.py +247 -0
- requirements.txt +313 -0
LICENSE
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
README.md
CHANGED
@@ -1,13 +1 @@
|
|
1 |
-
|
2 |
-
title: Error Analysis
|
3 |
-
emoji: 🔥
|
4 |
-
colorFrom: green
|
5 |
-
colorTo: red
|
6 |
-
sdk: streamlit
|
7 |
-
sdk_version: 1.2.0
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
-
license: apache-2.0
|
11 |
-
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
|
|
1 |
+
# error-analysis
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
amazon_polarity.test.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1e57ae9ce39c5251e432b4a6dce31915782276b98a7751281eb66b8cff3b46b6
|
3 |
+
size 5864011
|
app.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### LIBRARIES ###
|
2 |
+
# # Data
|
3 |
+
from matplotlib.pyplot import legend
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import torch
|
7 |
+
import json
|
8 |
+
from tqdm import tqdm
|
9 |
+
from math import floor
|
10 |
+
from datasets import load_dataset
|
11 |
+
from collections import defaultdict
|
12 |
+
from transformers import AutoTokenizer
|
13 |
+
|
14 |
+
# Analysis
|
15 |
+
# from gensim.models.doc2vec import Doc2Vec
|
16 |
+
# from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score
|
17 |
+
# import nltk
|
18 |
+
# nltk.download('punkt') #make sure that punkt is downloaded
|
19 |
+
|
20 |
+
# App & Visualization
|
21 |
+
import streamlit as st
|
22 |
+
import st_aggrid
|
23 |
+
import altair as alt
|
24 |
+
import plotly.graph_objects as go
|
25 |
+
from streamlit_vega_lite import altair_component
|
26 |
+
|
27 |
+
# utils
|
28 |
+
from random import sample
|
29 |
+
# from PIL import Image
|
30 |
+
|
31 |
+
|
32 |
+
def down_samp(embedding):
|
33 |
+
"""Down sample a data frame for altiar visualization """
|
34 |
+
# total number of positive and negative sentiments in the class
|
35 |
+
#embedding = embedding.groupby('slice').apply(lambda x: x.sample(frac=0.3))
|
36 |
+
total_size = embedding.groupby(['slice','label'], as_index=False).count()
|
37 |
+
|
38 |
+
user_data = 0
|
39 |
+
# if 'Your Sentences' in str(total_size['slice']):
|
40 |
+
# tmp = embedding.groupby(['slice'], as_index=False).count()
|
41 |
+
# val = int(tmp[tmp['slice'] == "Your Sentences"]['source'])
|
42 |
+
# user_data = val
|
43 |
+
|
44 |
+
max_sample = total_size.groupby('slice').max()['content']
|
45 |
+
|
46 |
+
# # down sample to meeting altair's max values
|
47 |
+
# # but keep the proportional representation of groups
|
48 |
+
down_samp = 1/(sum(max_sample.astype(float))/(1000-user_data))
|
49 |
+
|
50 |
+
max_samp = max_sample.apply(lambda x: floor(x*down_samp)).astype(int).to_dict()
|
51 |
+
max_samp['Your Sentences'] = user_data
|
52 |
+
|
53 |
+
# # sample down for each group in the data frame
|
54 |
+
embedding = embedding.groupby('slice').apply(lambda x: x.sample(n=max_samp.get(x.name))).reset_index(drop=True)
|
55 |
+
|
56 |
+
# # order the embedding
|
57 |
+
return(embedding)
|
58 |
+
|
59 |
+
|
60 |
+
def data_comparison(df):
|
61 |
+
# set up a dropdown select bindinf
|
62 |
+
# input_dropdown = alt.binding_select(options=['Negative Sentiment','Positive Sentiment'])
|
63 |
+
selection = alt.selection_multi(fields=['slice','label'])
|
64 |
+
color = alt.condition(alt.datum.slice == 'high-loss', alt.value("orange"), alt.value("steelblue"))
|
65 |
+
# color = alt.condition(selection,
|
66 |
+
# alt.Color('slice:Q', legend=None),
|
67 |
+
# # scale = alt.Scale(domain = pop_domain,range=color_range)),
|
68 |
+
# alt.value('lightgray'))
|
69 |
+
opacity = alt.condition(selection, alt.value(0.7), alt.value(0.25))
|
70 |
+
|
71 |
+
# basic chart
|
72 |
+
scatter = alt.Chart(df).mark_point(size=100, filled=True).encode(
|
73 |
+
x=alt.X('x', axis=None),
|
74 |
+
y=alt.Y('y', axis=None),
|
75 |
+
color=color,
|
76 |
+
shape=alt.Shape('label', scale=alt.Scale(range=['circle', 'diamond'])),
|
77 |
+
tooltip=['slice','content','label','pred'],
|
78 |
+
opacity=opacity
|
79 |
+
).properties(
|
80 |
+
width=1500,
|
81 |
+
height=1000
|
82 |
+
).interactive()
|
83 |
+
|
84 |
+
legend = alt.Chart(df).mark_point().encode(
|
85 |
+
y=alt.Y('slice:N', axis=alt.Axis(orient='right'), title=""),
|
86 |
+
x=alt.X("label"),
|
87 |
+
shape=alt.Shape('label', scale=alt.Scale(
|
88 |
+
range=['circle', 'diamond']), legend=None),
|
89 |
+
color=color
|
90 |
+
).add_selection(
|
91 |
+
selection
|
92 |
+
)
|
93 |
+
|
94 |
+
layered = scatter |legend
|
95 |
+
|
96 |
+
layered = layered.configure_axis(
|
97 |
+
grid=False
|
98 |
+
).configure_view(
|
99 |
+
strokeOpacity=0
|
100 |
+
)
|
101 |
+
|
102 |
+
return layered
|
103 |
+
|
104 |
+
|
105 |
+
def quant_panel(embedding_df):
|
106 |
+
""" Quantitative Panel Layout"""
|
107 |
+
|
108 |
+
all_metrics = {}
|
109 |
+
# st.warning("**Data Comparison**")
|
110 |
+
|
111 |
+
# with st.expander("how to read this chart:"):
|
112 |
+
# st.markdown("* each **point** is a single sentence")
|
113 |
+
# st.markdown("* the **position** of each dot is determined mathematically based upon an analysis of the words in a sentence. The **closer** two points on the visualization the **more similar** the sentences are. The **further apart ** two points on the visualization the **more different** the sentences are")
|
114 |
+
# st.markdown(
|
115 |
+
# " * the **shape** of each point reflects whether it a positive (diamond) or negative sentiment (circle)")
|
116 |
+
# st.markdown("* the **color** of each point is the ")
|
117 |
+
st.altair_chart(data_comparison(down_samp(embedding_df)))
|
118 |
+
|
119 |
+
def frequent_tokens(data, tokenizer, loss_quantile=0.95, top_k=200, smoothing=0.005):
|
120 |
+
unique_tokens = []
|
121 |
+
tokens = []
|
122 |
+
for row in tqdm(data['content']):
|
123 |
+
tokenized = tokenizer(row,padding=True, return_tensors='pt')
|
124 |
+
tokens.append(tokenized['input_ids'].flatten())
|
125 |
+
unique_tokens.append(torch.unique(tokenized['input_ids']))
|
126 |
+
losses = data['loss'].astype(float)
|
127 |
+
high_loss = losses.quantile(loss_quantile)
|
128 |
+
loss_weights = (losses > high_loss)
|
129 |
+
loss_weights = loss_weights / loss_weights.sum()
|
130 |
+
token_frequencies = defaultdict(float)
|
131 |
+
token_frequencies_error = defaultdict(float)
|
132 |
+
|
133 |
+
weights_uniform = np.full_like(loss_weights, 1 / len(loss_weights))
|
134 |
+
|
135 |
+
num_examples = len(data)
|
136 |
+
for i in tqdm(range(num_examples)):
|
137 |
+
for token in unique_tokens[i]:
|
138 |
+
token_frequencies[token.item()] += weights_uniform[i]
|
139 |
+
token_frequencies_error[token.item()] += loss_weights[i]
|
140 |
+
|
141 |
+
token_lrs = {k: (smoothing+token_frequencies_error[k]) / (smoothing+token_frequencies[k]) for k in token_frequencies}
|
142 |
+
tokens_sorted = list(map(lambda x: x[0], sorted(token_lrs.items(), key=lambda x: x[1])[::-1]))
|
143 |
+
|
144 |
+
top_tokens = []
|
145 |
+
for i, (token) in enumerate(tokens_sorted[:top_k]):
|
146 |
+
top_tokens.append(['%10s' % (tokenizer.decode(token)), '%.4f' % (token_frequencies[token]), '%.4f' % (
|
147 |
+
token_frequencies_error[token]), '%4.2f' % (token_lrs[token])])
|
148 |
+
return pd.DataFrame(top_tokens, columns=['Token', 'Freq', 'Freq error slice', 'lrs'])
|
149 |
+
|
150 |
+
|
151 |
+
@st.cache(ttl=600)
|
152 |
+
def get_data(spotlight, emb):
|
153 |
+
preds = spotlight.outputs.numpy()
|
154 |
+
losses = spotlight.losses.numpy()
|
155 |
+
embeddings = pd.DataFrame(emb, columns=['x', 'y'])
|
156 |
+
num_examples = len(losses)
|
157 |
+
# dataset_labels = [dataset[i]['label'] for i in range(num_examples)]
|
158 |
+
return pd.concat([pd.DataFrame(np.transpose(np.vstack([dataset[:num_examples]['content'],
|
159 |
+
dataset[:num_examples]['label'], preds, losses])), columns=['content', 'label', 'pred', 'loss']), embeddings], axis=1)
|
160 |
+
|
161 |
+
|
162 |
+
def topic_distribution(weights, smoothing=0.01):
|
163 |
+
topic_frequencies = defaultdict(float)
|
164 |
+
topic_frequencies_spotlight = defaultdict(float)
|
165 |
+
weights_uniform = np.full_like(weights, 1 / len(weights))
|
166 |
+
num_examples = len(weights)
|
167 |
+
for i in range(num_examples):
|
168 |
+
example = dataset[i]
|
169 |
+
category = example['title']
|
170 |
+
topic_frequencies[category] += weights_uniform[i]
|
171 |
+
topic_frequencies_spotlight[category] += weights[i]
|
172 |
+
|
173 |
+
topic_ratios = {c: (smoothing + topic_frequencies_spotlight[c]) / (
|
174 |
+
smoothing + topic_frequencies[c]) for c in topic_frequencies}
|
175 |
+
|
176 |
+
categories_sorted = map(lambda x: x[0], sorted(
|
177 |
+
topic_ratios.items(), key=lambda x: x[1], reverse=True))
|
178 |
+
|
179 |
+
topic_distr = []
|
180 |
+
for category in categories_sorted:
|
181 |
+
topic_distr.append(['%.3f' % topic_frequencies[category], '%.3f' %
|
182 |
+
topic_frequencies_spotlight[category], '%.2f' % topic_ratios[category], '%s' % category])
|
183 |
+
|
184 |
+
return pd.DataFrame(topic_distr, columns=['Overall frequency', 'Error frequency', 'Ratio', 'Category'])
|
185 |
+
# for category in categories_sorted:
|
186 |
+
# return(topic_frequencies[category], topic_frequencies_spotlight[category], topic_ratios[category], category)
|
187 |
+
|
188 |
+
|
189 |
+
if __name__ == "__main__":
|
190 |
+
### STREAMLIT APP CONGFIG ###
|
191 |
+
st.set_page_config(layout="wide", page_title="Error Slice Analysis")
|
192 |
+
lcol, rcol = st.columns([3, 2])
|
193 |
+
# ******* loading the mode and the data
|
194 |
+
dataset = st.sidebar.selectbox(
|
195 |
+
"Dataset",
|
196 |
+
["amazon_polarity", "squad", "movielens", "waterbirds"],
|
197 |
+
index=0
|
198 |
+
)
|
199 |
+
|
200 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
201 |
+
"distilbert-base-uncased-finetuned-sst-2-english")
|
202 |
+
|
203 |
+
model = st.sidebar.selectbox(
|
204 |
+
"Model",
|
205 |
+
["distilbert-base-uncased-finetuned-sst-2-english",
|
206 |
+
"distilbert-base-uncased-finetuned-sst-2-english"],
|
207 |
+
index=0
|
208 |
+
)
|
209 |
+
|
210 |
+
loss_quantile = st.sidebar.selectbox(
|
211 |
+
"Loss Quantile",
|
212 |
+
[0.98, 0.95, 0.9, 0.8, 0.75],
|
213 |
+
index = 1
|
214 |
+
)
|
215 |
+
### LOAD DATA AND SESSION VARIABLES ###
|
216 |
+
data_df = pd.read_parquet('amazon_polarity.test.parquet')
|
217 |
+
embedding_umap = data_df[['x','y']]
|
218 |
+
if "user_data" not in st.session_state:
|
219 |
+
st.session_state["user_data"] = data_df
|
220 |
+
if "selected_slice" not in st.session_state:
|
221 |
+
st.session_state["selected_slice"] = None
|
222 |
+
if "embedding" not in st.session_state:
|
223 |
+
st.session_state["embedding"] = embedding_umap
|
224 |
+
|
225 |
+
with lcol:
|
226 |
+
st.title('Error Slices')
|
227 |
+
dataframe = data_df[['content', 'label', 'pred', 'loss']].sort_values(
|
228 |
+
by=['loss'], ascending=False)
|
229 |
+
table_html = dataframe.to_html(
|
230 |
+
columns=['content', 'label', 'pred', 'loss'], max_rows=100)
|
231 |
+
# table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers
|
232 |
+
st.write(dataframe)
|
233 |
+
# st_aggrid.AgGrid(dataframe)
|
234 |
+
# table_html = dataframe.to_html(columns=['content', 'label', 'pred', 'loss'], max_rows=100)
|
235 |
+
# table_html = table_html.replace("<th>", '<th align="left">') # left-align the headers
|
236 |
+
# st.write(table_html)
|
237 |
+
|
238 |
+
with rcol:
|
239 |
+
st.title('Word Distribution in Error Slice')
|
240 |
+
commontokens = frequent_tokens(data_df, tokenizer, loss_quantile=loss_quantile)
|
241 |
+
st.write(commontokens)
|
242 |
+
data_df['loss'] = data_df['loss'].astype(float)
|
243 |
+
losses = data_df['loss']
|
244 |
+
high_loss = losses.quantile(loss_quantile)
|
245 |
+
data_df['slice'] = 'high-loss'
|
246 |
+
data_df['slice'] = data_df['slice'].where(data_df['loss'] > high_loss, 'low-loss')
|
247 |
+
quant_panel(data_df)
|
requirements.txt
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file may be used to create an environment using:
|
2 |
+
# $ conda create --name <env> --file <this file>
|
3 |
+
# platform: osx-arm64
|
4 |
+
abseil-cpp=20210324.2=hbdafb3b_0
|
5 |
+
aiohttp=3.8.1=py39hb18efdd_1
|
6 |
+
aiosignal=1.2.0=pyhd8ed1ab_0
|
7 |
+
altair=4.2.0=pyhd8ed1ab_1
|
8 |
+
appnope=0.1.3=pyhd8ed1ab_0
|
9 |
+
argh=0.26.2=pyh9f0ad1d_1002
|
10 |
+
argon2-cffi=21.3.0=pyhd8ed1ab_0
|
11 |
+
argon2-cffi-bindings=21.2.0=py39h5161555_1
|
12 |
+
arrow-cpp=6.0.1=py39h71c7f51_5_cpu
|
13 |
+
astor=0.8.1=pyh9f0ad1d_0
|
14 |
+
asttokens=2.0.5=pyhd8ed1ab_0
|
15 |
+
async-timeout=4.0.2=pyhd8ed1ab_0
|
16 |
+
attrs=21.4.0=pyhd8ed1ab_0
|
17 |
+
autopep8=1.6.0=pyhd3eb1b0_0
|
18 |
+
aws-c-auth=0.6.8=h77ca94e_1
|
19 |
+
aws-c-cal=0.5.12=hc1327b6_7
|
20 |
+
aws-c-common=0.6.17=h3422bc3_0
|
21 |
+
aws-c-compression=0.2.14=haaffe3e_7
|
22 |
+
aws-c-event-stream=0.2.7=hd0ff547_32
|
23 |
+
aws-c-http=0.6.10=h53b0524_3
|
24 |
+
aws-c-io=0.10.14=h3e85fa9_1
|
25 |
+
aws-c-mqtt=0.7.10=hd8b1cef_0
|
26 |
+
aws-c-s3=0.1.29=h6db2689_0
|
27 |
+
aws-c-sdkutils=0.1.1=haaffe3e_4
|
28 |
+
aws-checksums=0.1.12=haaffe3e_6
|
29 |
+
aws-crt-cpp=0.17.10=h5d9c0f4_5
|
30 |
+
aws-sdk-cpp=1.9.160=he5b1d48_0
|
31 |
+
backcall=0.2.0=pyh9f0ad1d_0
|
32 |
+
backports=1.0=py_2
|
33 |
+
backports.functools_lru_cache=1.6.4=pyhd8ed1ab_0
|
34 |
+
base58=2.1.1=pyhd8ed1ab_0
|
35 |
+
beautifulsoup4=4.10.0=pyha770c72_0
|
36 |
+
blas=2.114=openblas
|
37 |
+
blas-devel=3.9.0=14_osxarm64_openblas
|
38 |
+
bleach=4.1.0=pyhd8ed1ab_0
|
39 |
+
blinker=1.4=pypi_0
|
40 |
+
blosc=1.21.0=h9f76cd9_0
|
41 |
+
bokeh=2.4.2=py39hca03da5_0
|
42 |
+
boto3=1.22.0=pyhd8ed1ab_0
|
43 |
+
botocore=1.25.0=pyhd8ed1ab_0
|
44 |
+
bottleneck=1.3.4=py39heec5a64_0
|
45 |
+
brotli=1.0.7=hc377ac9_0
|
46 |
+
brotlipy=0.7.0=py39hb18efdd_1004
|
47 |
+
brunsli=0.1=hc377ac9_1
|
48 |
+
bzip2=1.0.8=h3422bc3_4
|
49 |
+
c-ares=1.18.1=h3422bc3_0
|
50 |
+
c-blosc2=2.0.4=h0095615_1
|
51 |
+
ca-certificates=2021.10.8=h4653dfc_0
|
52 |
+
cachetools=5.0.0=pyhd8ed1ab_0
|
53 |
+
certifi=2021.10.8=py39h2804cbe_2
|
54 |
+
cffi=1.15.0=py39h52b1de0_0
|
55 |
+
cfitsio=4.0.0=h99351b2_0
|
56 |
+
charls=2.2.0=hc377ac9_0
|
57 |
+
charset-normalizer=2.0.12=pyhd8ed1ab_0
|
58 |
+
click=8.0.4=py39h2804cbe_0
|
59 |
+
cloudpickle=2.0.0=pyhd3eb1b0_0
|
60 |
+
colorama=0.4.4=pyh9f0ad1d_0
|
61 |
+
colorcet=2.0.6=pyhd3eb1b0_0
|
62 |
+
cryptography=36.0.2=py39hbe5e4b8_1
|
63 |
+
cycler=0.11.0=pyhd3eb1b0_0
|
64 |
+
cytoolz=0.11.0=py39h1a28f6b_0
|
65 |
+
dask=2022.2.1=pyhd3eb1b0_0
|
66 |
+
dask-core=2022.2.1=pyhd3eb1b0_0
|
67 |
+
dataclasses=0.8=pyhc8e2a94_3
|
68 |
+
datasets=2.0.0=py_0
|
69 |
+
datashader=0.13.0=pyhd3eb1b0_1
|
70 |
+
datashape=0.5.4=py39hca03da5_1
|
71 |
+
debugpy=1.5.1=py39hfb83b0d_0
|
72 |
+
decorator=5.1.1=pyhd8ed1ab_0
|
73 |
+
defusedxml=0.7.1=pyhd8ed1ab_0
|
74 |
+
dill=0.3.4=pyhd8ed1ab_0
|
75 |
+
distributed=2022.2.1=pyhd3eb1b0_0
|
76 |
+
entrypoints=0.4=pyhd8ed1ab_0
|
77 |
+
executing=0.8.3=pyhd8ed1ab_0
|
78 |
+
filelock=3.6.0=pyhd8ed1ab_0
|
79 |
+
flit-core=3.7.1=pyhd8ed1ab_0
|
80 |
+
fonttools=4.31.2=pypi_0
|
81 |
+
freetype=2.11.0=h1192e45_0
|
82 |
+
frozenlist=1.3.0=py39hb18efdd_1
|
83 |
+
fsspec=2022.3.0=pyhd8ed1ab_0
|
84 |
+
future=0.18.2=py39hca03da5_1
|
85 |
+
fuzzywuzzy=0.18.0=pypi_0
|
86 |
+
gflags=2.2.2=hc88da5d_1004
|
87 |
+
gh=2.7.0=h75b854d_0
|
88 |
+
giflib=5.2.1=h1a28f6b_0
|
89 |
+
gitdb=4.0.9=pyhd8ed1ab_0
|
90 |
+
gitpython=3.1.27=pyhd8ed1ab_0
|
91 |
+
glog=0.5.0=h5c6a83d_0
|
92 |
+
grpc-cpp=1.42.0=hedfbb7c_1
|
93 |
+
heapdict=1.0.1=pyhd3eb1b0_0
|
94 |
+
holoviews=1.14.8=pyhd3eb1b0_0
|
95 |
+
htmlmin=0.1.12=pypi_0
|
96 |
+
huggingface_hub=0.5.1=py_0
|
97 |
+
idna=3.3=pyhd8ed1ab_0
|
98 |
+
imagecodecs=2021.11.20=py39hcb02aed_1
|
99 |
+
imagehash=4.2.1=pypi_0
|
100 |
+
imageio=2.9.0=pyhd3eb1b0_0
|
101 |
+
importlib-metadata=4.11.3=py39h2804cbe_1
|
102 |
+
importlib_metadata=4.11.3=hd8ed1ab_1
|
103 |
+
importlib_resources=5.6.0=pyhd8ed1ab_0
|
104 |
+
ipykernel=6.12.1=py39h32adebf_0
|
105 |
+
ipython=8.2.0=py39h2804cbe_0
|
106 |
+
ipython-genutils=0.2.0=pypi_0
|
107 |
+
ipython_genutils=0.2.0=py_1
|
108 |
+
ipywidgets=7.7.0=pyhd8ed1ab_0
|
109 |
+
jbig=2.1=h1a28f6b_0
|
110 |
+
jedi=0.18.1=py39h2804cbe_1
|
111 |
+
jinja2=3.1.1=pyhd8ed1ab_0
|
112 |
+
jmespath=1.0.0=pyhd8ed1ab_0
|
113 |
+
joblib=1.0.1=pypi_0
|
114 |
+
jpeg=9d=h1a28f6b_0
|
115 |
+
jsonschema=4.4.0=pyhd8ed1ab_0
|
116 |
+
jupyter=1.0.0=pypi_0
|
117 |
+
jupyter-console=6.4.3=pypi_0
|
118 |
+
jupyter_client=7.2.1=pyhd8ed1ab_0
|
119 |
+
jupyter_core=4.9.2=py39h2804cbe_0
|
120 |
+
jupyterlab_pygments=0.1.2=pyh9f0ad1d_0
|
121 |
+
jupyterlab_widgets=1.1.0=pyhd8ed1ab_0
|
122 |
+
jxrlib=1.1=h1a28f6b_2
|
123 |
+
kaleido=0.2.1=pypi_0
|
124 |
+
kiwisolver=1.4.2=pypi_0
|
125 |
+
krb5=1.19.3=hf9b2bbe_0
|
126 |
+
lcms2=2.12=hba8e193_0
|
127 |
+
lerc=3.0=hc377ac9_0
|
128 |
+
libaec=1.0.6=hbdafb3b_0
|
129 |
+
libblas=3.9.0=14_osxarm64_openblas
|
130 |
+
libbrotlicommon=1.0.9=h1c322ee_7
|
131 |
+
libbrotlidec=1.0.9=h1c322ee_7
|
132 |
+
libbrotlienc=1.0.9=h1c322ee_7
|
133 |
+
libcblas=3.9.0=14_osxarm64_openblas
|
134 |
+
libcurl=7.82.0=hb0e6552_0
|
135 |
+
libcxx=13.0.1=h6a5c8ee_0
|
136 |
+
libdeflate=1.8=h1a28f6b_5
|
137 |
+
libedit=3.1.20191231=hc8eb9b7_2
|
138 |
+
libev=4.33=h642e427_1
|
139 |
+
libevent=2.1.10=hbae9a57_4
|
140 |
+
libffi=3.4.2=h3422bc3_5
|
141 |
+
libgfortran=5.0.0.dev0=11_0_1_hf114ba7_23
|
142 |
+
libgfortran5=11.0.1.dev0=hf114ba7_23
|
143 |
+
liblapack=3.9.0=14_osxarm64_openblas
|
144 |
+
liblapacke=3.9.0=14_osxarm64_openblas
|
145 |
+
libllvm11=11.1.0=h93073aa_3
|
146 |
+
libnghttp2=1.47.0=he723fca_0
|
147 |
+
libopenblas=0.3.20=openmp_h2209c59_0
|
148 |
+
libpng=1.6.37=hb8d0fd4_0
|
149 |
+
libprotobuf=3.19.1=h98b2900_0
|
150 |
+
libsodium=1.0.18=h27ca646_1
|
151 |
+
libssh2=1.10.0=hb80f160_2
|
152 |
+
libthrift=0.15.0=h28a9c34_1
|
153 |
+
libtiff=4.3.0=h74060c4_2
|
154 |
+
libutf8proc=2.7.0=h3422bc3_0
|
155 |
+
libwebp=1.2.2=h68602c7_0
|
156 |
+
libwebp-base=1.2.2=h1a28f6b_0
|
157 |
+
libzlib=1.2.11=h90dfc92_1014
|
158 |
+
libzopfli=1.0.3=hc377ac9_0
|
159 |
+
llvm-openmp=13.0.1=h455960f_1
|
160 |
+
llvmlite=0.38.0=py39hd599773_1
|
161 |
+
locket=0.2.1=py39hca03da5_2
|
162 |
+
lz4-c=1.9.3=hbdafb3b_1
|
163 |
+
markdown=3.3.4=py39hca03da5_0
|
164 |
+
markupsafe=2.0.1=pypi_0
|
165 |
+
matplotlib=3.5.1=py39hca03da5_1
|
166 |
+
matplotlib-base=3.5.1=py39hc377ac9_1
|
167 |
+
matplotlib-inline=0.1.3=pyhd8ed1ab_0
|
168 |
+
missingno=0.5.1=pypi_0
|
169 |
+
mistune=0.8.4=py39h5161555_1005
|
170 |
+
msgpack-python=1.0.2=py39h525c30c_1
|
171 |
+
multidict=6.0.2=py39hb18efdd_1
|
172 |
+
multimethod=1.7=pypi_0
|
173 |
+
multipledispatch=0.6.0=py39hca03da5_0
|
174 |
+
multiprocess=0.70.12.2=py39hb18efdd_2
|
175 |
+
munkres=1.1.4=py_0
|
176 |
+
nbclient=0.5.13=pyhd8ed1ab_0
|
177 |
+
nbconvert=6.4.5=pyhd8ed1ab_2
|
178 |
+
nbconvert-core=6.4.5=pyhd8ed1ab_2
|
179 |
+
nbconvert-pandoc=6.4.5=pyhd8ed1ab_2
|
180 |
+
nbformat=5.3.0=pyhd8ed1ab_0
|
181 |
+
ncurses=6.3=hc470f4d_0
|
182 |
+
nest-asyncio=1.5.5=pyhd8ed1ab_0
|
183 |
+
networkx=2.7.1=pyhd3eb1b0_0
|
184 |
+
ninja=1.10.2=py39h525c30c_3
|
185 |
+
notebook=6.4.10=pyha770c72_0
|
186 |
+
numba=0.55.1=py39hb1c450a_0
|
187 |
+
numexpr=2.8.1=py39h144ceef_0
|
188 |
+
numpy=1.21.5=py39h25ab29e_1
|
189 |
+
numpy-base=1.21.5=py39h974a1f5_1
|
190 |
+
openblas=0.3.20=openmp_h745f6c2_0
|
191 |
+
openjpeg=2.4.0=h062765e_1
|
192 |
+
openssl=1.1.1n=h90dfc92_0
|
193 |
+
orc=1.7.1=hcb6706d_1
|
194 |
+
packaging=21.3=pyhd8ed1ab_0
|
195 |
+
pandas=1.4.1=py39hc377ac9_1
|
196 |
+
pandas-profiling=3.1.0=pypi_0
|
197 |
+
pandoc=2.12=hca03da5_0
|
198 |
+
pandocfilters=1.5.0=pyhd8ed1ab_0
|
199 |
+
panel=0.12.6=pyhd3eb1b0_0
|
200 |
+
param=1.12.0=pyhd3eb1b0_0
|
201 |
+
parquet-cpp=1.5.1=2
|
202 |
+
parso=0.8.3=pyhd8ed1ab_0
|
203 |
+
partd=1.2.0=pyhd3eb1b0_1
|
204 |
+
pexpect=4.8.0=pyh9f0ad1d_2
|
205 |
+
phik=0.12.2=pypi_0
|
206 |
+
pickleshare=0.7.5=py_1003
|
207 |
+
pillow=9.1.0=pypi_0
|
208 |
+
pip=22.0.4=pyhd8ed1ab_0
|
209 |
+
plotly=5.7.0=py_0
|
210 |
+
progressbar=2.5=pypi_0
|
211 |
+
prometheus_client=0.14.0=pyhd8ed1ab_0
|
212 |
+
prompt-toolkit=3.0.29=pyha770c72_0
|
213 |
+
protobuf=3.20.0=pypi_0
|
214 |
+
psutil=5.9.0=py39hb18efdd_1
|
215 |
+
ptyprocess=0.7.0=pyhd3deb0d_0
|
216 |
+
pure_eval=0.2.2=pyhd8ed1ab_0
|
217 |
+
pyahocorasick=1.4.4=pypi_0
|
218 |
+
pyarrow=6.0.1=py39hd3b58d7_5_cpu
|
219 |
+
pyasn1=0.4.8=pypi_0
|
220 |
+
pycodestyle=2.8.0=pyhd3eb1b0_0
|
221 |
+
pycparser=2.21=pyhd8ed1ab_0
|
222 |
+
pyct=0.4.6=py39hca03da5_0
|
223 |
+
pydantic=1.9.0=pypi_0
|
224 |
+
pydeck=0.7.1=pyh6c4a22f_0
|
225 |
+
pygments=2.11.2=pyhd8ed1ab_0
|
226 |
+
pympler=1.0.1=pypi_0
|
227 |
+
pynndescent=0.5.6=pyh6c4a22f_0
|
228 |
+
pyopenssl=22.0.0=pyhd8ed1ab_0
|
229 |
+
pyparsing=3.0.7=pyhd8ed1ab_0
|
230 |
+
pyrsistent=0.18.1=py39hb18efdd_1
|
231 |
+
pysocks=1.7.1=py39h2804cbe_5
|
232 |
+
python=3.9.12=hfc7342c_1_cpython
|
233 |
+
python-dateutil=2.8.2=pyhd8ed1ab_0
|
234 |
+
python-dotenv=0.19.2=pypi_0
|
235 |
+
python-fastjsonschema=2.15.3=pyhd8ed1ab_0
|
236 |
+
python-tzdata=2022.1=pyhd8ed1ab_0
|
237 |
+
python-xxhash=3.0.0=py39hb18efdd_0
|
238 |
+
python_abi=3.9=1_cp39
|
239 |
+
pytorch=1.10.2=cpu_py39h23cb94c_0
|
240 |
+
pytz=2022.1=pyhd8ed1ab_0
|
241 |
+
pytz-deprecation-shim=0.1.0.post0=py39h2804cbe_1
|
242 |
+
pyviz_comms=2.0.2=pyhd3eb1b0_0
|
243 |
+
pywavelets=1.3.0=py39h1a28f6b_0
|
244 |
+
pyyaml=6.0=py39hb18efdd_4
|
245 |
+
pyzmq=22.3.0=py39h7a4232c_2
|
246 |
+
qtconsole=5.3.0=pypi_0
|
247 |
+
qtpy=2.0.1=pypi_0
|
248 |
+
re2=2021.11.01=hbdafb3b_0
|
249 |
+
readline=8.1=hedafd6a_0
|
250 |
+
regex=2022.3.15=py39hb18efdd_1
|
251 |
+
requests=2.27.1=pyhd8ed1ab_0
|
252 |
+
s3transfer=0.5.2=pyhd8ed1ab_0
|
253 |
+
sacremoses=0.0.49=pyhd8ed1ab_0
|
254 |
+
scikit-image=0.19.2=py39h9197a36_0
|
255 |
+
scikit-learn=1.0.2=py39hef7049f_0
|
256 |
+
scipy=1.8.0=py39h5060c3b_1
|
257 |
+
seaborn=0.11.2=pypi_0
|
258 |
+
semver=2.13.0=pyh9f0ad1d_0
|
259 |
+
send2trash=1.8.0=pyhd8ed1ab_0
|
260 |
+
setuptools=62.0.0=py39h2804cbe_0
|
261 |
+
simplejson=3.17.6=pypi_0
|
262 |
+
six=1.16.0=pyh6c4a22f_0
|
263 |
+
smmap=5.0.0=pypi_0
|
264 |
+
snappy=1.1.8=hc88da5d_3
|
265 |
+
sortedcontainers=2.4.0=pyhd3eb1b0_0
|
266 |
+
soupsieve=2.3.2=pypi_0
|
267 |
+
sqlite=3.37.1=h7e3ccbd_0
|
268 |
+
stack_data=0.2.0=pyhd8ed1ab_0
|
269 |
+
streamlit=1.8.1=pyhd8ed1ab_0
|
270 |
+
streamlit-aggrid=0.2.3.post2=pypi_0
|
271 |
+
streamlit-vega-lite=0.1.0=pypi_0
|
272 |
+
tangled-up-in-unicode=0.1.0=pypi_0
|
273 |
+
tbb=2021.5.0=h3e96240_1
|
274 |
+
tblib=1.7.0=pyhd3eb1b0_0
|
275 |
+
tenacity=8.0.1=py39hca03da5_0
|
276 |
+
tensorboard-plugin-wit=1.8.1=pypi_0
|
277 |
+
terminado=0.13.3=py39h2804cbe_1
|
278 |
+
testpath=0.6.0=pyhd8ed1ab_0
|
279 |
+
threadpoolctl=3.1.0=pyh8a188c0_0
|
280 |
+
tifffile=2021.7.2=pyhd3eb1b0_2
|
281 |
+
tk=8.6.12=he1e0b03_0
|
282 |
+
tokenizers=0.11.6=pypi_0
|
283 |
+
toml=0.10.2=pyhd3eb1b0_0
|
284 |
+
toolz=0.11.2=pyhd8ed1ab_0
|
285 |
+
torchvision=0.2.2=py_3
|
286 |
+
tornado=6.1=py39hb18efdd_3
|
287 |
+
tqdm=4.64.0=pyhd8ed1ab_0
|
288 |
+
traitlets=5.1.1=pyhd8ed1ab_0
|
289 |
+
transformers=4.18.0=pypi_0
|
290 |
+
typing-extensions=4.1.1=hd8ed1ab_0
|
291 |
+
typing_extensions=4.1.1=pyha770c72_0
|
292 |
+
tzdata=2022a=h191b570_0
|
293 |
+
tzlocal=4.2=py39h2804cbe_0
|
294 |
+
umap-learn=0.5.3=py39h2804cbe_0
|
295 |
+
urllib3=1.26.9=pyhd8ed1ab_0
|
296 |
+
validators=0.18.2=pyhd3deb0d_0
|
297 |
+
visions=0.7.4=pypi_0
|
298 |
+
watchdog=2.1.7=py39hb18efdd_1
|
299 |
+
wcwidth=0.2.5=pyh9f0ad1d_2
|
300 |
+
webencodings=0.5.1=pypi_0
|
301 |
+
wheel=0.37.1=pyhd8ed1ab_0
|
302 |
+
widgetsnbextension=3.6.0=py39h2804cbe_0
|
303 |
+
xarray=0.20.1=pyhd3eb1b0_1
|
304 |
+
xxhash=0.8.0=h27ca646_3
|
305 |
+
xz=5.2.5=h642e427_1
|
306 |
+
yaml=0.2.5=h3422bc3_2
|
307 |
+
yarl=1.7.2=py39hb18efdd_2
|
308 |
+
zeromq=4.3.4=hbdafb3b_1
|
309 |
+
zfp=0.5.5=hc377ac9_6
|
310 |
+
zict=2.0.0=pyhd3eb1b0_0
|
311 |
+
zipp=3.8.0=pyhd8ed1ab_0
|
312 |
+
zlib=1.2.11=h90dfc92_1014
|
313 |
+
zstd=1.5.2=h861e0a7_0
|