Spaces:
Running
Running
| import gradio as gr | |
| import requests | |
| from PIL import Image | |
| from io import BytesIO | |
| import os | |
| # Load API Token from environment variable | |
| API_TOKEN = os.getenv("HF_API_TOKEN") # Ensure you've set this environment variable | |
| # Hugging Face Inference API URL | |
| API_URL = "https://api-inference.huggingface.co/models/enhanceaiteam/Flux-uncensored" | |
| # Function to call Hugging Face API and get the generated image | |
| def generate_image(prompt, progress=gr.Progress()): | |
| headers = {"Authorization": f"Bearer {API_TOKEN}"} | |
| data = {"inputs": prompt} | |
| # Initialize progress | |
| progress(0, desc="Starting image generation...") | |
| response = requests.post(API_URL, headers=headers, json=data) | |
| if response.status_code == 200: | |
| progress(50, desc="Processing image...") | |
| image_bytes = BytesIO(response.content) | |
| image = Image.open(image_bytes) | |
| progress(100, desc="Completed") | |
| return image | |
| else: | |
| progress(100, desc="Error occurred") | |
| return f"Error: {response.status_code}, {response.text}" | |
| # Create Gradio interface | |
| def create_ui(): | |
| with gr.Blocks(theme="hev832/Applio", title="Flux Uncensored") as ui: | |
| gr.Markdown("## Flux Uncensored\nUnofficial Gradio Demo") | |
| prompt_input = gr.Textbox(label="Enter a Prompt", placeholder="Describe the image you want to generate", lines=3) | |
| generate_button = gr.Button("Generate Image") | |
| with gr.Row(): | |
| output_image = gr.Image(label="Generated Image") | |
| # Link the button to the function with progress | |
| generate_button.click(fn=generate_image, inputs=prompt_input, outputs=output_image, show_progress=True) | |
| return ui | |
| # Run the interface | |
| if __name__ == "__main__": | |
| create_ui().launch(debug=True) | |