Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- README.md +5 -5
- app.py +120 -0
- requirements.txt +3 -0
README.md
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: pink
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
-
license:
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Ep
|
| 3 |
+
emoji: 🏢
|
| 4 |
colorFrom: pink
|
| 5 |
+
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 3.27.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import torch
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import time
|
| 5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 6 |
+
|
| 7 |
+
codes_as_string = '''Assamese asm_Beng
|
| 8 |
+
Awadhi awa_Deva
|
| 9 |
+
Bengali ben_Beng
|
| 10 |
+
Bhojpuri bho_Deva
|
| 11 |
+
Standard Tibetan bod_Tibt
|
| 12 |
+
Dzongkha dzo_Tibt
|
| 13 |
+
English eng_Latn
|
| 14 |
+
Gujarati guj_Gujr
|
| 15 |
+
Hindi hin_Deva
|
| 16 |
+
Chhattisgarhi hne_Deva
|
| 17 |
+
Kannada kan_Knda
|
| 18 |
+
Kashmiri (Arabic script) kas_Arab
|
| 19 |
+
Kashmiri (Devanagari script) kas_Deva
|
| 20 |
+
Mizo lus_Latn
|
| 21 |
+
Magahi mag_Deva
|
| 22 |
+
Maithili mai_Deva
|
| 23 |
+
Malayalam mal_Mlym
|
| 24 |
+
Marathi mar_Deva
|
| 25 |
+
Meitei (Bengali script) mni_Beng
|
| 26 |
+
Burmese mya_Mymr
|
| 27 |
+
Nepali npi_Deva
|
| 28 |
+
Odia ory_Orya
|
| 29 |
+
Punjabi pan_Guru
|
| 30 |
+
Sanskrit san_Deva
|
| 31 |
+
Santali sat_Olck
|
| 32 |
+
Sindhi snd_Arab
|
| 33 |
+
Tamil tam_Taml
|
| 34 |
+
Telugu tel_Telu
|
| 35 |
+
Urdu urd_Arab
|
| 36 |
+
Vietnamese vie_Latn'''
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def load_models():
|
| 41 |
+
# build model and tokenizer
|
| 42 |
+
model_name_dict = {
|
| 43 |
+
'nllb-1.3B': "ychenNLP/nllb-200-distilled-1.3B-easyproject",
|
| 44 |
+
}
|
| 45 |
+
|
| 46 |
+
model_dict = {}
|
| 47 |
+
|
| 48 |
+
for call_name, real_name in model_name_dict.items():
|
| 49 |
+
print('\tLoading model: %s' % call_name)
|
| 50 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(real_name)
|
| 51 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-200-distilled-600M")
|
| 52 |
+
model_dict[call_name+'_model'] = model
|
| 53 |
+
model_dict[call_name+'_tokenizer'] = tokenizer
|
| 54 |
+
|
| 55 |
+
return model_dict
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
def translation(source, target, text):
|
| 59 |
+
if len(model_dict) == 2:
|
| 60 |
+
model_name = 'nllb-1.3B'
|
| 61 |
+
|
| 62 |
+
start_time = time.time()
|
| 63 |
+
source = flores_codes[source]
|
| 64 |
+
target = flores_codes[target]
|
| 65 |
+
|
| 66 |
+
model = model_dict[model_name + '_model']
|
| 67 |
+
tokenizer = model_dict[model_name + '_tokenizer']
|
| 68 |
+
|
| 69 |
+
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target)
|
| 70 |
+
output = translator(text, max_length=400)
|
| 71 |
+
|
| 72 |
+
end_time = time.time()
|
| 73 |
+
|
| 74 |
+
full_output = output
|
| 75 |
+
output = output[0]['translation_text']
|
| 76 |
+
# result = {'inference_time': end_time - start_time,
|
| 77 |
+
# 'source': source,
|
| 78 |
+
# 'target': target,
|
| 79 |
+
# 'result': output,
|
| 80 |
+
# 'full_output': full_output}
|
| 81 |
+
return output
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
if __name__ == '__main__':
|
| 85 |
+
print('\tinit models')
|
| 86 |
+
codes_as_string = codes_as_string.split('\n')
|
| 87 |
+
|
| 88 |
+
flores_codes = {}
|
| 89 |
+
for code in codes_as_string:
|
| 90 |
+
lang, lang_code = code.split('\t')
|
| 91 |
+
flores_codes[lang] = lang_code
|
| 92 |
+
|
| 93 |
+
global model_dict
|
| 94 |
+
|
| 95 |
+
model_dict = load_models()
|
| 96 |
+
|
| 97 |
+
# define gradio demo
|
| 98 |
+
lang_codes = list(flores_codes.keys())
|
| 99 |
+
|
| 100 |
+
inputs = [gr.inputs.Dropdown(lang_codes, default='English', label='Source'),
|
| 101 |
+
gr.inputs.Dropdown(lang_codes, default='Hindi', label='Target'),
|
| 102 |
+
gr.inputs.Textbox(lines=5, label="Input text"),
|
| 103 |
+
]
|
| 104 |
+
|
| 105 |
+
outputs = gr.inputs.Textbox(label="Output text")
|
| 106 |
+
|
| 107 |
+
title = "Machine Translation Demo"
|
| 108 |
+
|
| 109 |
+
demo_status = "Machine Translation System."
|
| 110 |
+
description = f"{demo_status}"
|
| 111 |
+
|
| 112 |
+
gr.Interface(translation,
|
| 113 |
+
inputs,
|
| 114 |
+
outputs,
|
| 115 |
+
title=title,
|
| 116 |
+
description=description,
|
| 117 |
+
examples=examples,
|
| 118 |
+
examples_per_page=50,
|
| 119 |
+
theme="JohnSmith9982/small_and_pretty"
|
| 120 |
+
).launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
git+https://github.com/huggingface/transformers
|
| 2 |
+
gradio
|
| 3 |
+
torch
|