Spaces:
Runtime error
Runtime error
Upload 2 files
Browse filesAdd Gradio demo for logistic regression model, first try
- app.py +40 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 4 |
+
from sklearn.linear_model import LogisticRegression
|
| 5 |
+
|
| 6 |
+
# Load the dataset and prepare the model (as you already did)
|
| 7 |
+
dataset = load_dataset("nhull/tripadvisor-split-dataset")
|
| 8 |
+
train_data = dataset['train']
|
| 9 |
+
val_data = dataset['validation']
|
| 10 |
+
test_data = dataset['test']
|
| 11 |
+
|
| 12 |
+
# Prepare data and labels
|
| 13 |
+
X_train, y_train = train_data['review'], train_data['label']
|
| 14 |
+
X_val, y_val = val_data['review'], val_data['label']
|
| 15 |
+
X_test, y_test = test_data['review'], test_data['label']
|
| 16 |
+
|
| 17 |
+
# Vectorize the text using TF-IDF
|
| 18 |
+
vectorizer = TfidfVectorizer(max_features=10000)
|
| 19 |
+
X_train_vec = vectorizer.fit_transform(X_train)
|
| 20 |
+
X_val_vec = vectorizer.transform(X_val)
|
| 21 |
+
X_test_vec = vectorizer.transform(X_test)
|
| 22 |
+
|
| 23 |
+
# Train the logistic regression model
|
| 24 |
+
model = LogisticRegression(max_iter=1000)
|
| 25 |
+
model.fit(X_train_vec, y_train)
|
| 26 |
+
|
| 27 |
+
# Define the prediction function
|
| 28 |
+
def predict_sentiment(text):
|
| 29 |
+
text_vec = vectorizer.transform([text])
|
| 30 |
+
prediction = model.predict(text_vec)[0]
|
| 31 |
+
return f"Predicted label: {prediction}"
|
| 32 |
+
|
| 33 |
+
# Create the Gradio interface
|
| 34 |
+
iface = gr.Interface(fn=predict_sentiment,
|
| 35 |
+
inputs=gr.Textbox(label="Enter a review text", placeholder="Type your review here..."),
|
| 36 |
+
outputs=gr.Textbox(label="Predicted label"),
|
| 37 |
+
live=True)
|
| 38 |
+
|
| 39 |
+
# Launch the interface
|
| 40 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
scikit-learn
|
| 3 |
+
datasets
|