ChromaDB / app.py
nightfury's picture
Update app.py
426a78e verified
"""
import json
import logging
import os
import re
import sys
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
from sentence_transformers import SentenceTransformer
from langchain.text_splitter import CharacterTextSplitter
#from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFLoader
from fastapi.encoders import jsonable_encoder
from dotenv import load_dotenv
#load_dotenv()
#logging.basicConfig(level=logging.DEBUG)
ABS_PATH = os.path.dirname(os.path.abspath(__file__))
DB_DIR = os.path.join(ABS_PATH, "db")
vectorstore = None
#embedding_function
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
def replace_newlines_and_spaces(text):
# Replace all newline characters with spaces
text = text.replace("\n", " ")
# Replace multiple spaces with a single space
text = re.sub(r'\s+', ' ', text)
return text
def get_documents():
return PyPDFLoader("AI-smart-water-management-systems.pdf").load()
def init_chromadb():
# Delete existing index directory and recreate the directory
if os.path.exists(DB_DIR):
import shutil
shutil.rmtree(DB_DIR, ignore_errors=True)
os.mkdir(DB_DIR)
documents = []
for num, doc in enumerate(get_documents()):
doc.page_content = replace_newlines_and_spaces(doc.page_content)
documents.append(doc)
# Split the documents into chunks
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
# Select which embeddings we want to use
#embeddings = OpenAIEmbeddings()
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# Create the vectorestore to use as the index
vectorstore = Chroma.from_documents(texts, embeddings, persist_directory=DB_DIR)
#vectorstore.persist()
#print(vectorstore)
#vectorstore = None
#db = vectorstore
#db.get()
#print(len(db.get()["ids"]))
# Print the list of source files
for x in range(len(vectorstore.get()["ids"])):
# print(db.get()["metadatas"][x])
doc = vectorstore.get()["metadatas"][x]
source = doc["source"]
print("Source {x} :: ",source)
def query_chromadb():
if not os.path.exists(DB_DIR):
raise Exception(f"{DB_DIR} does not exist, nothing can be queried")
# Select which embeddings we want to use
#embeddings = OpenAIEmbeddings()
#embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
# Load Vector store from local disk
#vectorstore = Chroma(persist_directory=DB_DIR, embedding_function=embeddings)
#vectorstore.persist()
result = vectorstore.similarity_search_with_score(query="how to use AI in water conservation?", k=4)
jsonable_result = jsonable_encoder(result)
print(json.dumps(jsonable_result, indent=2))
def main():
init_chromadb()
if __name__ == '__main__':
main()
"""
import chromadb
from llama_index.vector_stores.chroma import ChromaVectorStore
#from llama_index.core import VectorStoreIndex, StorageContext, TextNode
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext, PromptTemplate
from llama_index.core.indices.vector_store.retrievers import VectorIndexAutoRetriever
from llama_index.core.query_engine import RetrieverQueryEngine
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
#from llama_index.llms.huggingface import HuggingFaceLLM
# Initialize ChromaDB client and collection
chroma_client = chromadb.HttpClient(host="localhost", port="8080", ssl=False)
chroma_collection = chroma_client.get_or_create_collection("example_collection")
# Define embedding function using HuggingFace
embed_model = HuggingFaceEmbedding(model_name="all-MiniLM-L6-v2")
# Initialize ChromaVectorStore with the collection
vector_store = ChromaVectorStore(chroma_collection=chroma_collection)
# Set up StorageContext and VectorStoreIndex
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex(embed_model=embed_model, storage_context=storage_context)
# Define and load documents with embeddings
documents = [
{
"text": "Your document text here", "embedding": [0.1, 0.2, 0.3],
'cricket': DirectoryLoader('/content/cricket', glob="*.pdf", loader_cls=PyPDFLoader).load(),
'fifa': DirectoryLoader('/content/fifa', glob="*.pdf", loader_cls=PyPDFLoader).load(),
# Add more documents as needed
},
]
# Load documents into ChromaDB using VectorStoreIndex
index.from_documents(documents=documents)
# Initialize the AutoRetriever with VectorStoreIndex and VectorStoreInfo
auto_retriever = VectorIndexAutoRetriever(index)
# Set up the RetrieverQuery Engine with the AutoRetriever
query_engine = RetrieverQueryEngine(auto_retriever)
# Query documents using the RetrieverQuery Engine
response = query_engine.query("Your query here")
print(response)