""" import json import logging import os import re import sys from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings from sentence_transformers import SentenceTransformer from langchain.text_splitter import CharacterTextSplitter #from langchain.embeddings import OpenAIEmbeddings from langchain.vectorstores import Chroma from langchain.document_loaders import PyPDFLoader from fastapi.encoders import jsonable_encoder from dotenv import load_dotenv #load_dotenv() #logging.basicConfig(level=logging.DEBUG) ABS_PATH = os.path.dirname(os.path.abspath(__file__)) DB_DIR = os.path.join(ABS_PATH, "db") vectorstore = None #embedding_function embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") def replace_newlines_and_spaces(text): # Replace all newline characters with spaces text = text.replace("\n", " ") # Replace multiple spaces with a single space text = re.sub(r'\s+', ' ', text) return text def get_documents(): return PyPDFLoader("AI-smart-water-management-systems.pdf").load() def init_chromadb(): # Delete existing index directory and recreate the directory if os.path.exists(DB_DIR): import shutil shutil.rmtree(DB_DIR, ignore_errors=True) os.mkdir(DB_DIR) documents = [] for num, doc in enumerate(get_documents()): doc.page_content = replace_newlines_and_spaces(doc.page_content) documents.append(doc) # Split the documents into chunks text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(documents) # Select which embeddings we want to use #embeddings = OpenAIEmbeddings() embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") # Create the vectorestore to use as the index vectorstore = Chroma.from_documents(texts, embeddings, persist_directory=DB_DIR) #vectorstore.persist() #print(vectorstore) #vectorstore = None #db = vectorstore #db.get() #print(len(db.get()["ids"])) # Print the list of source files for x in range(len(vectorstore.get()["ids"])): # print(db.get()["metadatas"][x]) doc = vectorstore.get()["metadatas"][x] source = doc["source"] print("Source {x} :: ",source) def query_chromadb(): if not os.path.exists(DB_DIR): raise Exception(f"{DB_DIR} does not exist, nothing can be queried") # Select which embeddings we want to use #embeddings = OpenAIEmbeddings() #embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2") # Load Vector store from local disk #vectorstore = Chroma(persist_directory=DB_DIR, embedding_function=embeddings) #vectorstore.persist() result = vectorstore.similarity_search_with_score(query="how to use AI in water conservation?", k=4) jsonable_result = jsonable_encoder(result) print(json.dumps(jsonable_result, indent=2)) def main(): init_chromadb() if __name__ == '__main__': main() """ import chromadb from llama_index.vector_stores.chroma import ChromaVectorStore #from llama_index.core import VectorStoreIndex, StorageContext, TextNode from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, ServiceContext, PromptTemplate from llama_index.core.indices.vector_store.retrievers import VectorIndexAutoRetriever from llama_index.core.query_engine import RetrieverQueryEngine from llama_index.embeddings.huggingface import HuggingFaceEmbedding #from llama_index.llms.huggingface import HuggingFaceLLM # Initialize ChromaDB client and collection chroma_client = chromadb.HttpClient(host="localhost", port="8080", ssl=False) chroma_collection = chroma_client.get_or_create_collection("example_collection") # Define embedding function using HuggingFace embed_model = HuggingFaceEmbedding(model_name="all-MiniLM-L6-v2") # Initialize ChromaVectorStore with the collection vector_store = ChromaVectorStore(chroma_collection=chroma_collection) # Set up StorageContext and VectorStoreIndex storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex(embed_model=embed_model, storage_context=storage_context) # Define and load documents with embeddings documents = [ { "text": "Your document text here", "embedding": [0.1, 0.2, 0.3], 'cricket': DirectoryLoader('/content/cricket', glob="*.pdf", loader_cls=PyPDFLoader).load(), 'fifa': DirectoryLoader('/content/fifa', glob="*.pdf", loader_cls=PyPDFLoader).load(), # Add more documents as needed }, ] # Load documents into ChromaDB using VectorStoreIndex index.from_documents(documents=documents) # Initialize the AutoRetriever with VectorStoreIndex and VectorStoreInfo auto_retriever = VectorIndexAutoRetriever(index) # Set up the RetrieverQuery Engine with the AutoRetriever query_engine = RetrieverQueryEngine(auto_retriever) # Query documents using the RetrieverQuery Engine response = query_engine.query("Your query here") print(response)