Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
# Load the fine-tuned model | |
model_name = "gpt2" # Replace with your fine-tuned model path if available | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
# Define chatbot function | |
def chatbot_response(input_text): | |
response = generator(input_text, max_length=50, num_return_sequences=1) | |
return response[0]['generated_text'] | |
# Create Gradio interface | |
interface = gr.Interface( | |
fn=chatbot_response, | |
inputs="text", | |
outputs="text", | |
title="Love and Smile", | |
description="An AI assistant for enhanced texting, flirting, and dating conversations.", | |
) | |
# Launch app | |
interface.launch() | |