from typing import Optional import spaces import gradio as gr import torch from PIL import Image import io import base64 from util.utils import ( check_ocr_box, get_yolo_model, get_caption_model_processor, get_som_labeled_img, ) from huggingface_hub import snapshot_download # Define repository and local directory repo_id = "microsoft/OmniParser-v2.0" # HF repo local_dir = "weights" # Target local directory # Download the entire repository snapshot_download(repo_id=repo_id, local_dir=local_dir) print(f"Repository downloaded to: {local_dir}") yolo_model = get_yolo_model(model_path="weights/icon_detect/model.pt") caption_model_processor = get_caption_model_processor( model_name="florence2", model_name_or_path="weights/icon_caption" ) # caption_model_processor = get_caption_model_processor(model_name="blip2", model_name_or_path="weights/icon_caption_blip2") MARKDOWN = """ # OmniParser V2 for Pure Vision Based General GUI Agent 🔥
OmniParser is a screen parsing tool to convert general GUI screen to structured elements. """ DEVICE = torch.device("cuda") @spaces.GPU @torch.inference_mode() # @torch.autocast(device_type="cuda", dtype=torch.bfloat16) def process( image_input, box_threshold, iou_threshold, use_paddleocr, imgsz ) -> Optional[Image.Image]: # image_save_path = 'imgs/saved_image_demo.png' # image_input.save(image_save_path) # image = Image.open(image_save_path) box_overlay_ratio = image_input.size[0] / 3200 draw_bbox_config = { "text_scale": 0.8 * box_overlay_ratio, "text_thickness": max(int(2 * box_overlay_ratio), 1), "text_padding": max(int(3 * box_overlay_ratio), 1), "thickness": max(int(3 * box_overlay_ratio), 1), } # import pdb; pdb.set_trace() ocr_bbox_rslt, is_goal_filtered = check_ocr_box( image_input, display_img=False, output_bb_format="xyxy", goal_filtering=None, easyocr_args={"paragraph": False, "text_threshold": 0.9}, use_paddleocr=use_paddleocr, ) text, ocr_bbox = ocr_bbox_rslt dino_labled_img, label_coordinates, parsed_content_list = get_som_labeled_img( image_input, yolo_model, BOX_TRESHOLD=box_threshold, output_coord_in_ratio=True, ocr_bbox=ocr_bbox, draw_bbox_config=draw_bbox_config, caption_model_processor=caption_model_processor, ocr_text=text, iou_threshold=iou_threshold, imgsz=imgsz, ) image = Image.open(io.BytesIO(base64.b64decode(dino_labled_img))) print("finish processing") parsed_content_list = "\n".join( [f"icon {i}: " + str(v) for i, v in enumerate(parsed_content_list)] ) # parsed_content_list = str(parsed_content_list) return image, str(parsed_content_list) with gr.Blocks() as demo: gr.Markdown(MARKDOWN) with gr.Row(): with gr.Column(): image_input_component = gr.Image(type="pil", label="Upload image") # set the threshold for removing the bounding boxes with low confidence, default is 0.05 box_threshold_component = gr.Slider( label="Box Threshold", minimum=0.01, maximum=1.0, step=0.01, value=0.05 ) # set the threshold for removing the bounding boxes with large overlap, default is 0.1 iou_threshold_component = gr.Slider( label="IOU Threshold", minimum=0.01, maximum=1.0, step=0.01, value=0.1 ) use_paddleocr_component = gr.Checkbox(label="Use PaddleOCR", value=True) imgsz_component = gr.Slider( label="Icon Detect Image Size", minimum=640, maximum=1920, step=32, value=640, ) submit_button_component = gr.Button(value="Submit", variant="primary") with gr.Column(): image_output_component = gr.Image(type="pil", label="Image Output") text_output_component = gr.Textbox( label="Parsed screen elements", placeholder="Text Output" ) gr.Examples( examples=[ ["assets/Programme_Officiel.png", 0.05, 0.1, True, 640], ], inputs=[ image_input_component, box_threshold_component, iou_threshold_component, use_paddleocr_component, imgsz_component, ], outputs=[image_output_component, text_output_component], fn=process, cache_examples=True, ) submit_button_component.click( fn=process, inputs=[ image_input_component, box_threshold_component, iou_threshold_component, use_paddleocr_component, imgsz_component, ], outputs=[image_output_component, text_output_component], ) # demo.launch(debug=False, show_error=True, share=True) # demo.launch(share=True, server_port=7861, server_name='0.0.0.0') demo.queue().launch(share=False)