import gradio as gr import spaces import torch from image_loader import load_image_from_url, load_image_from_file from image_processor import process_image import logging # Configure logging logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') torch.set_float32_matmul_precision(["high", "highest"][0]) try: birefnet = AutoModelForImageSegmentation.from_pretrained( "ZhengPeng7/BiRefNet", trust_remote_code=True ) birefnet.to("cuda") logging.info("BiRefNet model loaded successfully.") except Exception as e: logging.error(f"Error loading BiRefNet model: {e}") raise Exception(f"Error loading BiRefNet model: {e}") def fn(image_input): try: if isinstance(image_input, str): # URL input img = load_image_from_url(image_input) else: # File upload img = load_image_from_file(image_input) img = img.convert("RGB") origin = img.copy() processed_image = process(img) return (processed_image, origin) except Exception as e: logging.error(f"Error in fn function: {e}") return None, None # Return None or a placeholder image @spaces.GPU def process(image): try: processed_image = process_image(image, birefnet) return processed_image except Exception as e: logging.error(f"Error in process function: {e}") raise gr.Error(f"Error processing image: {e}") def process_file(file_path): try: name_path = file_path.rsplit(".", 1)[0] + ".png" img = load_image_from_file(file_path) img = img.convert("RGB") transparent = process(img) transparent.save(name_path) logging.info(f"Processed image saved to: {name_path}") return name_path except Exception as e: logging.error(f"Error in process_file function: {e}") raise gr.Error(f"Error processing file: {e}") slider1 = gr.ImageSlider(label="Processed Image", type="pil", format="png") slider2 = gr.ImageSlider(label="Processed Image from URL", type="pil", format="png") image_upload = gr.Image(label="Upload an image") image_file_upload = gr.Image(label="Upload an image", type="filepath") url_input = gr.Textbox(label="Paste an image URL") output_file = gr.File(label="Output PNG File") # Example images try: chameleon = load_image_from_file("butterfly.jpg") except Exception as e: logging.error(f"Error loading example image: {e}") chameleon = None # Or a placeholder image url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg" tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1, examples=[chameleon], api_name="image") tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2, examples=[url_example], api_name="text") tab3 = gr.Interface(process_file, inputs=image_file_upload, outputs=output_file, examples=["butterfly.jpg"], api_name="png") demo = gr.TabbedInterface( [tab1, tab2, tab3], ["Image Upload", "URL Input", "File Output"], title="Background Removal Tool" ) if __name__ == "__main__": demo.launch(show_error=True)