Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import string
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import requests
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import (
|
| 6 |
+
AutoConfig,
|
| 7 |
+
AutoModelForSequenceClassification,
|
| 8 |
+
AutoTokenizer,
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
model_dir = "my-bert-model"
|
| 12 |
+
|
| 13 |
+
config = AutoConfig.from_pretrained(model_dir, num_labels=3, finetuning_task="text-classification")
|
| 14 |
+
tokenizer = AutoTokenizer.from_pretrained(model_dir)
|
| 15 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_dir, config=config)
|
| 16 |
+
|
| 17 |
+
def inference(input_text):
|
| 18 |
+
inputs = tokenizer.batch_encode_plus(
|
| 19 |
+
[input_text],
|
| 20 |
+
max_length=512,
|
| 21 |
+
pad_to_max_length=True,
|
| 22 |
+
truncation=True,
|
| 23 |
+
padding="max_length",
|
| 24 |
+
return_tensors="pt",
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
with torch.no_grad():
|
| 28 |
+
logits = model(**inputs).logits
|
| 29 |
+
|
| 30 |
+
predicted_class_id = logits.argmax().item()
|
| 31 |
+
output = model.config.id2label[predicted_class_id]
|
| 32 |
+
return output
|
| 33 |
+
|
| 34 |
+
demo = gr.Interface(
|
| 35 |
+
fn=inference,
|
| 36 |
+
inputs=gr.Textbox(label="Input Text", scale=2, container=False),
|
| 37 |
+
outputs=gr.Textbox(label="Output Label"),
|
| 38 |
+
examples = [
|
| 39 |
+
["My last two weather pics from the storm on August 2nd. People packed up real fast after the temp dropped and winds picked up.", 1],
|
| 40 |
+
["Lying Clinton sinking! Donald Trump singing: Let's Make America Great Again!", 0],
|
| 41 |
+
],
|
| 42 |
+
title="Tutorial: BERT-based Text Classificatioin",
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
demo.launch(debug=True)
|