Spaces:
Sleeping
Sleeping
| # 3p | |
| import numpy as np | |
| import cv2 | |
| from scipy.spatial import distance | |
| from scipy.ndimage.filters import convolve | |
| from scipy.sparse import diags, csr_matrix | |
| from scipy.sparse.linalg import spsolve | |
| # project | |
| from utils import get_sparse_neighbor | |
| def create_spacial_affinity_kernel(spatial_sigma: float, size: int = 15): | |
| """Create a kernel (`size` * `size` matrix) that will be used to compute the he spatial affinity based Gaussian weights. | |
| Arguments: | |
| spatial_sigma {float} -- Spatial standard deviation. | |
| Keyword Arguments: | |
| size {int} -- size of the kernel. (default: {15}) | |
| Returns: | |
| np.ndarray - `size` * `size` kernel | |
| """ | |
| kernel = np.zeros((size, size)) | |
| for i in range(size): | |
| for j in range(size): | |
| kernel[i, j] = np.exp(-0.5 * (distance.euclidean((i, j), (size // 2, size // 2)) ** 2) / (spatial_sigma ** 2)) | |
| return kernel | |
| def compute_smoothness_weights(L: np.ndarray, x: int, kernel: np.ndarray, eps: float = 1e-3): | |
| """Compute the smoothness weights used in refining the illumination map optimization problem. | |
| Arguments: | |
| L {np.ndarray} -- the initial illumination map to be refined. | |
| x {int} -- the direction of the weights. Can either be x=1 for horizontal or x=0 for vertical. | |
| kernel {np.ndarray} -- spatial affinity matrix | |
| Keyword Arguments: | |
| eps {float} -- small constant to avoid computation instability. (default: {1e-3}) | |
| Returns: | |
| np.ndarray - smoothness weights according to direction x. same dimension as `L`. | |
| """ | |
| Lp = cv2.Sobel(L, cv2.CV_64F, int(x == 1), int(x == 0), ksize=1) | |
| T = convolve(np.ones_like(L), kernel, mode='constant') | |
| T = T / (np.abs(convolve(Lp, kernel, mode='constant')) + eps) | |
| return T / (np.abs(Lp) + eps) | |
| def fuse_multi_exposure_images(im: np.ndarray, under_ex: np.ndarray, over_ex: np.ndarray, | |
| bc: float = 1, bs: float = 1, be: float = 1): | |
| """perform the exposure fusion method used in the DUAL paper. | |
| Arguments: | |
| im {np.ndarray} -- input image to be enhanced. | |
| under_ex {np.ndarray} -- under-exposure corrected image. same dimension as `im`. | |
| over_ex {np.ndarray} -- over-exposure corrected image. same dimension as `im`. | |
| Keyword Arguments: | |
| bc {float} -- parameter for controlling the influence of Mertens's contrast measure. (default: {1}) | |
| bs {float} -- parameter for controlling the influence of Mertens's saturation measure. (default: {1}) | |
| be {float} -- parameter for controlling the influence of Mertens's well exposedness measure. (default: {1}) | |
| Returns: | |
| np.ndarray -- the fused image. same dimension as `im`. | |
| """ | |
| merge_mertens = cv2.createMergeMertens(bc, bs, be) | |
| images = [np.clip(x * 255, 0, 255).astype("uint8") for x in [im, under_ex, over_ex]] | |
| fused_images = merge_mertens.process(images) | |
| return fused_images | |
| def refine_illumination_map_linear(L: np.ndarray, gamma: float, lambda_: float, kernel: np.ndarray, eps: float = 1e-3): | |
| """Refine the illumination map based on the optimization problem described in the two papers. | |
| This function use the sped-up solver presented in the LIME paper. | |
| Arguments: | |
| L {np.ndarray} -- the illumination map to be refined. | |
| gamma {float} -- gamma correction factor. | |
| lambda_ {float} -- coefficient to balance the terms in the optimization problem. | |
| kernel {np.ndarray} -- spatial affinity matrix. | |
| Keyword Arguments: | |
| eps {float} -- small constant to avoid computation instability (default: {1e-3}). | |
| Returns: | |
| np.ndarray -- refined illumination map. same shape as `L`. | |
| """ | |
| # compute smoothness weights | |
| wx = compute_smoothness_weights(L, x=1, kernel=kernel, eps=eps) | |
| wy = compute_smoothness_weights(L, x=0, kernel=kernel, eps=eps) | |
| n, m = L.shape | |
| L_1d = L.copy().flatten() | |
| # compute the five-point spatially inhomogeneous Laplacian matrix | |
| row, column, data = [], [], [] | |
| for p in range(n * m): | |
| diag = 0 | |
| for q, (k, l, x) in get_sparse_neighbor(p, n, m).items(): | |
| weight = wx[k, l] if x else wy[k, l] | |
| row.append(p) | |
| column.append(q) | |
| data.append(-weight) | |
| diag += weight | |
| row.append(p) | |
| column.append(p) | |
| data.append(diag) | |
| F = csr_matrix((data, (row, column)), shape=(n * m, n * m)) | |
| # solve the linear system | |
| Id = diags([np.ones(n * m)], [0]) | |
| A = Id + lambda_ * F | |
| L_refined = spsolve(csr_matrix(A), L_1d, permc_spec=None, use_umfpack=True).reshape((n, m)) | |
| # gamma correction | |
| L_refined = np.clip(L_refined, eps, 1) ** gamma | |
| return L_refined | |
| def correct_underexposure(im: np.ndarray, gamma: float, lambda_: float, kernel: np.ndarray, eps: float = 1e-3): | |
| """correct underexposudness using the retinex based algorithm presented in DUAL and LIME paper. | |
| Arguments: | |
| im {np.ndarray} -- input image to be corrected. | |
| gamma {float} -- gamma correction factor. | |
| lambda_ {float} -- coefficient to balance the terms in the optimization problem. | |
| kernel {np.ndarray} -- spatial affinity matrix. | |
| Keyword Arguments: | |
| eps {float} -- small constant to avoid computation instability (default: {1e-3}) | |
| Returns: | |
| np.ndarray -- image underexposudness corrected. same shape as `im`. | |
| """ | |
| # first estimation of the illumination map | |
| L = np.max(im, axis=-1) | |
| # illumination refinement | |
| L_refined = refine_illumination_map_linear(L, gamma, lambda_, kernel, eps) | |
| # correct image underexposure | |
| L_refined_3d = np.repeat(L_refined[..., None], 3, axis=-1) | |
| im_corrected = im / L_refined_3d | |
| return im_corrected | |
| # TODO: resize image if too large, optimization take too much time | |
| def enhance_image_exposure(im: np.ndarray, gamma: float, lambda_: float, dual: bool = True, sigma: int = 3, | |
| bc: float = 1, bs: float = 1, be: float = 1, eps: float = 1e-3): | |
| """Enhance input image, using either DUAL method, or LIME method. For more info, please see original papers. | |
| Arguments: | |
| im {np.ndarray} -- input image to be corrected. | |
| gamma {float} -- gamma correction factor. | |
| lambda_ {float} -- coefficient to balance the terms in the optimization problem (in DUAL and LIME). | |
| Keyword Arguments: | |
| dual {bool} -- boolean variable to indicate enhancement method to be used (either DUAL or LIME) (default: {True}) | |
| sigma {int} -- Spatial standard deviation for spatial affinity based Gaussian weights. (default: {3}) | |
| bc {float} -- parameter for controlling the influence of Mertens's contrast measure. (default: {1}) | |
| bs {float} -- parameter for controlling the influence of Mertens's saturation measure. (default: {1}) | |
| be {float} -- parameter for controlling the influence of Mertens's well exposedness measure. (default: {1}) | |
| eps {float} -- small constant to avoid computation instability (default: {1e-3}) | |
| Returns: | |
| np.ndarray -- image exposure enhanced. same shape as `im`. | |
| """ | |
| # create spacial affinity kernel | |
| kernel = create_spacial_affinity_kernel(sigma) | |
| # correct underexposudness | |
| im_normalized = im.astype(float) / 255. | |
| under_corrected = correct_underexposure(im_normalized, gamma, lambda_, kernel, eps) | |
| if dual: | |
| # correct overexposure and merge if DUAL method is selected | |
| inv_im_normalized = 1 - im_normalized | |
| over_corrected = 1 - correct_underexposure(inv_im_normalized, gamma, lambda_, kernel, eps) | |
| # fuse images | |
| im_corrected = fuse_multi_exposure_images(im_normalized, under_corrected, over_corrected, bc, bs, be) | |
| else: | |
| im_corrected = under_corrected | |
| # convert to 8 bits and returns | |
| return np.clip(im_corrected * 255, 0, 255).astype("uint8") | |