erastorgueva-nv commited on
Commit
caf4011
·
1 Parent(s): 581b819

dont pass in model to decorated function, hopefully will fix pickle error

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -63,7 +63,7 @@ def convert_audio(audio_filepath, tmpdir, utt_id):
63
  return out_filename, duration
64
 
65
  @spaces.GPU
66
- def transcribe(manifest_filepath, model, model_stride_in_secs, audio_duration, duration_limit):
67
  """
68
  Transcribe audio using either model.transcribe or buffered inference.
69
  Duration limit determines which method to use and what chunk size will
@@ -182,7 +182,7 @@ def on_go_btn_click(audio_filepath, src_lang, tgt_lang, pnc, gen_ts):
182
 
183
 
184
  if gen_ts == "yes": # if will generate timestamps
185
- output = transcribe(manifest_filepath, model, model_stride_in_secs, audio_duration=duration, duration_limit=10.0)
186
 
187
  # process output to get word and segment level timestamps
188
  word_level_timestamps = output[0].timestamp["word"]
@@ -201,7 +201,7 @@ def on_go_btn_click(audio_filepath, src_lang, tgt_lang, pnc, gen_ts):
201
  output_html += "</div>\n"
202
 
203
  else: # if will not generate timestamps
204
- output = transcribe(manifest_filepath, model, model_stride_in_secs, audio_duration=duration, duration_limit=40.0)
205
 
206
  if taskname == "asr":
207
  output_html += "<div class='heading'>Transcript</div>\n"
 
63
  return out_filename, duration
64
 
65
  @spaces.GPU
66
+ def transcribe(manifest_filepath, audio_duration, duration_limit):
67
  """
68
  Transcribe audio using either model.transcribe or buffered inference.
69
  Duration limit determines which method to use and what chunk size will
 
182
 
183
 
184
  if gen_ts == "yes": # if will generate timestamps
185
+ output = transcribe(manifest_filepath, audio_duration=duration, duration_limit=10.0)
186
 
187
  # process output to get word and segment level timestamps
188
  word_level_timestamps = output[0].timestamp["word"]
 
201
  output_html += "</div>\n"
202
 
203
  else: # if will not generate timestamps
204
+ output = transcribe(manifest_filepath, audio_duration=duration, duration_limit=40.0)
205
 
206
  if taskname == "asr":
207
  output_html += "<div class='heading'>Transcript</div>\n"