File size: 13,225 Bytes
5960768
 
35d0ee5
 
5960768
 
 
 
 
 
 
 
 
 
 
 
 
 
af9482d
 
 
21e142e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88d5920
 
21e142e
88d5920
 
21e142e
 
 
 
88d5920
 
21e142e
 
 
 
 
 
 
 
 
 
 
 
 
 
88d5920
 
 
21e142e
af9482d
 
 
 
 
88d5920
 
 
 
 
af9482d
 
 
 
88d5920
 
 
 
 
 
 
 
 
 
 
1463f7d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88d5920
 
af9482d
 
5960768
67a3cba
a25014e
67a3cba
5960768
 
 
 
 
 
 
5dbc39d
7182724
af9482d
a25014e
 
7182724
 
af9482d
7182724
 
a25014e
 
7182724
 
a25014e
af9482d
c1ee788
21e142e
7182724
af9482d
c1ee788
af9482d
c1ee788
af9482d
 
 
 
7182724
 
 
a25014e
7182724
 
5960768
5dbc39d
67a3cba
21e142e
67a3cba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a25014e
67a3cba
 
 
 
 
 
 
 
21e142e
67a3cba
 
 
21e142e
 
67a3cba
 
21e142e
67a3cba
 
 
 
 
 
 
 
a25014e
 
 
5960768
5dbc39d
35d0ee5
 
 
 
 
 
 
e238fa6
 
35d0ee5
 
 
21e142e
35d0ee5
21e142e
35d0ee5
 
 
 
 
21e142e
35d0ee5
 
21e142e
35d0ee5
 
 
5960768
 
 
 
 
 
 
 
 
 
21e142e
ee2a19d
 
 
 
 
 
 
 
 
 
5960768
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np

from src.about import (
    CITATION_BUTTON_LABEL,
    CITATION_BUTTON_TEXT,
    INTRODUCTION_TEXT,
    LLM_BENCHMARKS_TEXT,
    TITLE,
)
from src.display.css_html_js import custom_css


### Space initialisation


# Load leaderboard data with multi-header, do not set index initially
LEADERBOARD_DF_ORIGINAL = pd.read_csv("leaderboard_data.csv", header=[0, 1])

# Calculate Average N-avg and Rank
# Identify N-avg columns (adjust if names are different in CSV header row 2)
n_avg_cols_to_average = [
    ('Alignment', 'N-avg↑'), 
    ('Descriptiveness', 'N-avg↑'), 
    ('Complexity', 'N-avg↑'),
    ('Side effects', 'N-avg↑')
]

# Ensure these columns are numeric, coercing errors to NaN (though they should be numbers)
for col_tuple in n_avg_cols_to_average:
    if col_tuple in LEADERBOARD_DF_ORIGINAL.columns:
        LEADERBOARD_DF_ORIGINAL[col_tuple] = pd.to_numeric(LEADERBOARD_DF_ORIGINAL[col_tuple], errors='coerce')
    else:
        print(f"Warning: N-avg column {col_tuple} not found for averaging.") # Add a warning

# Calculate average, handling cases where some N-avg columns might be missing
existing_n_avg_cols = [col for col in n_avg_cols_to_average if col in LEADERBOARD_DF_ORIGINAL.columns]
if existing_n_avg_cols:
    LEADERBOARD_DF_ORIGINAL[('Avg-', ' N-avg')] = LEADERBOARD_DF_ORIGINAL[existing_n_avg_cols].mean(axis=1)
    LEADERBOARD_DF_ORIGINAL[('Avg-', 'Rank')] = LEADERBOARD_DF_ORIGINAL[('Avg-', ' N-avg')].rank(method='min', ascending=False).astype(int)
else:
    LEADERBOARD_DF_ORIGINAL[('Avg-', ' N-avg')] = np.nan
    LEADERBOARD_DF_ORIGINAL[('Avg-', 'Rank')] = np.nan


# Reorder columns to put Rank and Average N-avg first, then Model, then the rest
model_col_tuple = ('Model', 'Model') # Original name of the model column
rank_col_tuple = ('Avg-', 'Rank')
avg_navg_col_tuple = ('Avg-', ' N-avg')

new_col_order = []
if rank_col_tuple in LEADERBOARD_DF_ORIGINAL.columns:
    new_col_order.append(rank_col_tuple)
if avg_navg_col_tuple in LEADERBOARD_DF_ORIGINAL.columns:
    new_col_order.append(avg_navg_col_tuple)
if model_col_tuple in LEADERBOARD_DF_ORIGINAL.columns:
    new_col_order.append(model_col_tuple)

for col in LEADERBOARD_DF_ORIGINAL.columns:
    if col not in new_col_order:
        new_col_order.append(col)
LEADERBOARD_DF_ORIGINAL = LEADERBOARD_DF_ORIGINAL[new_col_order]

# Sort by Rank ascending
if rank_col_tuple in LEADERBOARD_DF_ORIGINAL.columns:
    LEADERBOARD_DF_ORIGINAL = LEADERBOARD_DF_ORIGINAL.sort_values(by=rank_col_tuple, ascending=True)

# Function to prepare DataFrame for display (format headers, ensure Model column)
def format_leaderboard_df_for_display(df_orig):
    df_display = df_orig.copy()
    new_columns = []
    for col_tuple in df_display.columns:
        if col_tuple == ('Avg-', 'Rank'):
            new_columns.append('Overall Rank')
        elif col_tuple == ('Avg-', ' N-avg'):
            new_columns.append('Average N-avg')
        elif col_tuple == ('Model', 'Model'):
            new_columns.append('Model')
        else:
            new_columns.append(f"{col_tuple[0]}\n{col_tuple[1]}")
    df_display.columns = new_columns
    
    # Create a new DataFrame with the formatted column names for display
    # and apply formatting to the 'Average N-avg' data if it exists
    temp_formatted_df = pd.DataFrame(df_display.values, columns=new_columns, index=df_display.index)
    if 'Average N-avg' in temp_formatted_df.columns:
        # Ensure the column is numeric before formatting, in case it became object type
        temp_formatted_df['Average N-avg'] = pd.to_numeric(temp_formatted_df['Average N-avg'], errors='coerce')
        temp_formatted_df['Average N-avg'] = temp_formatted_df['Average N-avg'].map(lambda x: f"{x:.4f}" if pd.notnull(x) else '-')

    # Convert the 'Overall Rank' to integer string to avoid '.0'
    if 'Overall Rank' in temp_formatted_df.columns:
        def format_rank_with_emoji(rank_val):
            if pd.isnull(rank_val):
                return '-'
            try:
                rank_int = int(float(rank_val)) # Ensure conversion from potential float string
                if rank_int == 1:
                    return f"{rank_int} 🥇"
                elif rank_int == 2:
                    return f"{rank_int} 🥈"
                elif rank_int == 3:
                    return f"{rank_int} 🥉"
                else:
                    return f"{rank_int}"
            except ValueError:
                return str(rank_val) # Return original if not convertible to int
        temp_formatted_df['Overall Rank'] = temp_formatted_df['Overall Rank'].map(format_rank_with_emoji)

    return temp_formatted_df

LEADERBOARD_DF_DISPLAY_INIT = format_leaderboard_df_for_display(LEADERBOARD_DF_ORIGINAL)

BIAS_DF = pd.read_csv("bias_evaluation_data.csv")
BIAS_DF = BIAS_DF.astype(str).fillna("-")


demo = gr.Blocks(css=custom_css)
with demo:
    gr.HTML(TITLE)
    gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")

    with gr.Tabs(elem_classes="tab-buttons") as tabs:
        with gr.TabItem("🧠 Unified perf eval VLM captioners", elem_id="llm-benchmark-tab-table", id=0):
            with gr.Column():
                table_output = gr.DataFrame(value=LEADERBOARD_DF_DISPLAY_INIT, label="Leaderboard Results", interactive=True, wrap=True)
                
                gr.Markdown("---")
                gr.Markdown("### Display Options")
                
                model_filter_choices = LEADERBOARD_DF_ORIGINAL[('Model', 'Model')].unique().tolist()
                model_selector = gr.CheckboxGroup(
                    choices=model_filter_choices,
                    value=model_filter_choices, 
                    label="Filter by Model types:"
                )

                def update_table(selected_models_from_filter):
                    filtered_df_orig = LEADERBOARD_DF_ORIGINAL.copy()
                    if not selected_models_from_filter:
                        filtered_df_orig = LEADERBOARD_DF_ORIGINAL[LEADERBOARD_DF_ORIGINAL[('Model', 'Model')].isin([])]
                    else:
                        valid_selected_models = [model for model in selected_models_from_filter if model in model_filter_choices]
                        if not valid_selected_models:
                            filtered_df_orig = LEADERBOARD_DF_ORIGINAL[LEADERBOARD_DF_ORIGINAL[('Model', 'Model')].isin([])]
                        else:
                            filtered_df_orig = LEADERBOARD_DF_ORIGINAL[LEADERBOARD_DF_ORIGINAL[('Model', 'Model')].isin(valid_selected_models)]
                    
                    df_to_display = format_leaderboard_df_for_display(filtered_df_orig)
                    return gr.DataFrame.update(value=df_to_display)

                model_selector.change(
                    fn=update_table,
                    inputs=[model_selector],
                    outputs=[table_output]
                )

        with gr.TabItem("📝 Bias-aware eval VLM ", elem_id="llm-benchmark-tab-table", id=2):
            with gr.Column():
                gr.Markdown("### Bias-Aware Evaluation Results")
                bias_table_output = gr.DataFrame(value=BIAS_DF, label="Bias Evaluation Results", interactive=True, wrap=True)
                gr.Markdown("---")
                gr.Markdown("### Display Options for Bias Table")
                bias_all_columns_list = BIAS_DF.columns.tolist()
                bias_column_selector = gr.CheckboxGroup(
                    choices=bias_all_columns_list,
                    value=bias_all_columns_list,
                    label="Select Columns to Display:"
                )
                bias_type_filter_choices = BIAS_DF["Bias_Type"].unique().tolist() if "Bias_Type" in BIAS_DF.columns else []
                bias_type_selector = gr.CheckboxGroup(
                    choices=bias_type_filter_choices,
                    value=bias_type_filter_choices, 
                    label="Filter by Bias Type:"
                )
                bias_model_filter_choices = BIAS_DF["Model"].unique().tolist() if "Model" in BIAS_DF.columns else []
                bias_model_selector_for_bias_tab = gr.CheckboxGroup(
                    choices=bias_model_filter_choices,
                    value=bias_model_filter_choices,
                    label="Filter by Model:"
                )
                def update_bias_table(selected_cols, selected_bias_types, selected_models):
                    temp_df = BIAS_DF.copy()
                    if selected_bias_types and "Bias_Type" in temp_df.columns:
                        temp_df = temp_df[temp_df["Bias_Type"].isin(selected_bias_types)]
                    elif not selected_bias_types and "Bias_Type" in temp_df.columns:
                        temp_df = pd.DataFrame(columns=BIAS_DF.columns)
                    if selected_models and "Model" in temp_df.columns:
                        temp_df = temp_df[temp_df["Model"].isin(selected_models)]
                    elif not selected_models and "Model" in temp_df.columns:
                        if not selected_bias_types:
                             temp_df = pd.DataFrame(columns=BIAS_DF.columns)
                        elif "Bias_Type" in temp_df.columns and temp_df["Bias_Type"].isin(selected_bias_types).any():
                            temp_df = temp_df[~temp_df["Model"].isin(BIAS_DF["Model"].unique())]
                    valid_selected_cols = [col for col in selected_cols if col in temp_df.columns]
                    if not valid_selected_cols and not temp_df.empty:
                        final_df = temp_df
                    elif not valid_selected_cols and temp_df.empty:
                        final_df = pd.DataFrame(columns=selected_cols) 
                    else:
                        final_df = temp_df[valid_selected_cols]
                    return gr.DataFrame.update(value=final_df)
                bias_column_selector.change(fn=update_bias_table, inputs=[bias_column_selector, bias_type_selector, bias_model_selector_for_bias_tab], outputs=[bias_table_output])
                bias_type_selector.change(fn=update_bias_table, inputs=[bias_column_selector, bias_type_selector, bias_model_selector_for_bias_tab], outputs=[bias_table_output])
                bias_model_selector_for_bias_tab.change(fn=update_bias_table, inputs=[bias_column_selector, bias_type_selector, bias_model_selector_for_bias_tab], outputs=[bias_table_output])

        with gr.TabItem("🧑‍🍳 User Type & Preference-Oriented Scores ", elem_id="llm-benchmark-tab-table", id=3):
            with gr.Column():
                gr.Markdown("### Preference-Oriented Scores by User Type and Model")
                def create_preference_score_chart():
                    user_types = ['Detail-oriented', 'Risk-conscious', 'Accuracy-focused']
                    models = ['MiniGPT-4', 'InstructBLIP', 'LLaVA-1.5', 'mPLUG-Owl2', 'Qwen2-VL']
                    scores = np.array([
                        [0.20, 0.35, 0.45, 0.50, 0.85],  # Detail-oriented
                        [0.40, 0.55, 0.67, 0.53, 0.58],  # Risk-conscious
                        [0.20, 0.60, 0.72, 0.69, 0.75]   # Accuracy-focused
                    ])
                    x = np.arange(len(user_types))
                    width = 0.15
                    fig, ax = plt.subplots(figsize=(12, 7))
                    for i, model in enumerate(models):
                        ax.bar(x + i * width - (width * (len(models)-1)/2), scores[:, i], width, label=model)
                    ax.set_xlabel('User type', fontsize=12)
                    ax.set_ylabel('Preference-oriented score', fontsize=12)
                    ax.set_title('Preference-oriented scores by User Type and Model', fontsize=14)
                    ax.set_xticks(x)
                    ax.set_xticklabels(user_types, fontsize=10)
                    ax.legend(title='Model', bbox_to_anchor=(1.05, 1), loc='upper left')
                    plt.ylim(0, 1.1)
                    plt.grid(axis='y', linestyle='--', alpha=0.7)
                    plt.tight_layout(rect=[0, 0, 0.85, 1])
                    return fig
                gr.Plot(value=create_preference_score_chart)

    with gr.Row():
        with gr.Accordion("📙 Citation", open=False):
            citation_button = gr.Textbox(
                value=CITATION_BUTTON_TEXT,
                label=CITATION_BUTTON_LABEL,
                lines=20,
                elem_id="citation-button",
                show_copy_button=True,
            )

    gr.Markdown("---") 
    link_to_discussion = "https://huggingface.co/login?next=%2Fspaces%2Fnvidia%2FLOTUS-VLM-Bias%2Fdiscussions%2Fnew"
    gr.HTML(f'''
        <div style="text-align: center; margin-top: 20px; margin-bottom: 20px;">
            <a href="{link_to_discussion}" target="_blank" rel="noopener noreferrer" 
               style="background-color: #007bff; color: white; padding: 10px 20px; text-decoration: none; border-radius: 5px; font-size: 16px;">
                Submit Your Results / Open a New Discussion
            </a>
        </div>
    ''')

demo.queue(default_concurrency_limit=40).launch()