File size: 13,225 Bytes
5960768 35d0ee5 5960768 af9482d 21e142e 88d5920 21e142e 88d5920 21e142e 88d5920 21e142e 88d5920 21e142e af9482d 88d5920 af9482d 88d5920 1463f7d 88d5920 af9482d 5960768 67a3cba a25014e 67a3cba 5960768 5dbc39d 7182724 af9482d a25014e 7182724 af9482d 7182724 a25014e 7182724 a25014e af9482d c1ee788 21e142e 7182724 af9482d c1ee788 af9482d c1ee788 af9482d 7182724 a25014e 7182724 5960768 5dbc39d 67a3cba 21e142e 67a3cba a25014e 67a3cba 21e142e 67a3cba 21e142e 67a3cba 21e142e 67a3cba a25014e 5960768 5dbc39d 35d0ee5 e238fa6 35d0ee5 21e142e 35d0ee5 21e142e 35d0ee5 21e142e 35d0ee5 21e142e 35d0ee5 5960768 21e142e ee2a19d 5960768 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import gradio as gr
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from src.about import (
CITATION_BUTTON_LABEL,
CITATION_BUTTON_TEXT,
INTRODUCTION_TEXT,
LLM_BENCHMARKS_TEXT,
TITLE,
)
from src.display.css_html_js import custom_css
### Space initialisation
# Load leaderboard data with multi-header, do not set index initially
LEADERBOARD_DF_ORIGINAL = pd.read_csv("leaderboard_data.csv", header=[0, 1])
# Calculate Average N-avg and Rank
# Identify N-avg columns (adjust if names are different in CSV header row 2)
n_avg_cols_to_average = [
('Alignment', 'N-avg↑'),
('Descriptiveness', 'N-avg↑'),
('Complexity', 'N-avg↑'),
('Side effects', 'N-avg↑')
]
# Ensure these columns are numeric, coercing errors to NaN (though they should be numbers)
for col_tuple in n_avg_cols_to_average:
if col_tuple in LEADERBOARD_DF_ORIGINAL.columns:
LEADERBOARD_DF_ORIGINAL[col_tuple] = pd.to_numeric(LEADERBOARD_DF_ORIGINAL[col_tuple], errors='coerce')
else:
print(f"Warning: N-avg column {col_tuple} not found for averaging.") # Add a warning
# Calculate average, handling cases where some N-avg columns might be missing
existing_n_avg_cols = [col for col in n_avg_cols_to_average if col in LEADERBOARD_DF_ORIGINAL.columns]
if existing_n_avg_cols:
LEADERBOARD_DF_ORIGINAL[('Avg-', ' N-avg')] = LEADERBOARD_DF_ORIGINAL[existing_n_avg_cols].mean(axis=1)
LEADERBOARD_DF_ORIGINAL[('Avg-', 'Rank')] = LEADERBOARD_DF_ORIGINAL[('Avg-', ' N-avg')].rank(method='min', ascending=False).astype(int)
else:
LEADERBOARD_DF_ORIGINAL[('Avg-', ' N-avg')] = np.nan
LEADERBOARD_DF_ORIGINAL[('Avg-', 'Rank')] = np.nan
# Reorder columns to put Rank and Average N-avg first, then Model, then the rest
model_col_tuple = ('Model', 'Model') # Original name of the model column
rank_col_tuple = ('Avg-', 'Rank')
avg_navg_col_tuple = ('Avg-', ' N-avg')
new_col_order = []
if rank_col_tuple in LEADERBOARD_DF_ORIGINAL.columns:
new_col_order.append(rank_col_tuple)
if avg_navg_col_tuple in LEADERBOARD_DF_ORIGINAL.columns:
new_col_order.append(avg_navg_col_tuple)
if model_col_tuple in LEADERBOARD_DF_ORIGINAL.columns:
new_col_order.append(model_col_tuple)
for col in LEADERBOARD_DF_ORIGINAL.columns:
if col not in new_col_order:
new_col_order.append(col)
LEADERBOARD_DF_ORIGINAL = LEADERBOARD_DF_ORIGINAL[new_col_order]
# Sort by Rank ascending
if rank_col_tuple in LEADERBOARD_DF_ORIGINAL.columns:
LEADERBOARD_DF_ORIGINAL = LEADERBOARD_DF_ORIGINAL.sort_values(by=rank_col_tuple, ascending=True)
# Function to prepare DataFrame for display (format headers, ensure Model column)
def format_leaderboard_df_for_display(df_orig):
df_display = df_orig.copy()
new_columns = []
for col_tuple in df_display.columns:
if col_tuple == ('Avg-', 'Rank'):
new_columns.append('Overall Rank')
elif col_tuple == ('Avg-', ' N-avg'):
new_columns.append('Average N-avg')
elif col_tuple == ('Model', 'Model'):
new_columns.append('Model')
else:
new_columns.append(f"{col_tuple[0]}\n{col_tuple[1]}")
df_display.columns = new_columns
# Create a new DataFrame with the formatted column names for display
# and apply formatting to the 'Average N-avg' data if it exists
temp_formatted_df = pd.DataFrame(df_display.values, columns=new_columns, index=df_display.index)
if 'Average N-avg' in temp_formatted_df.columns:
# Ensure the column is numeric before formatting, in case it became object type
temp_formatted_df['Average N-avg'] = pd.to_numeric(temp_formatted_df['Average N-avg'], errors='coerce')
temp_formatted_df['Average N-avg'] = temp_formatted_df['Average N-avg'].map(lambda x: f"{x:.4f}" if pd.notnull(x) else '-')
# Convert the 'Overall Rank' to integer string to avoid '.0'
if 'Overall Rank' in temp_formatted_df.columns:
def format_rank_with_emoji(rank_val):
if pd.isnull(rank_val):
return '-'
try:
rank_int = int(float(rank_val)) # Ensure conversion from potential float string
if rank_int == 1:
return f"{rank_int} 🥇"
elif rank_int == 2:
return f"{rank_int} 🥈"
elif rank_int == 3:
return f"{rank_int} 🥉"
else:
return f"{rank_int}"
except ValueError:
return str(rank_val) # Return original if not convertible to int
temp_formatted_df['Overall Rank'] = temp_formatted_df['Overall Rank'].map(format_rank_with_emoji)
return temp_formatted_df
LEADERBOARD_DF_DISPLAY_INIT = format_leaderboard_df_for_display(LEADERBOARD_DF_ORIGINAL)
BIAS_DF = pd.read_csv("bias_evaluation_data.csv")
BIAS_DF = BIAS_DF.astype(str).fillna("-")
demo = gr.Blocks(css=custom_css)
with demo:
gr.HTML(TITLE)
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text")
with gr.Tabs(elem_classes="tab-buttons") as tabs:
with gr.TabItem("🧠 Unified perf eval VLM captioners", elem_id="llm-benchmark-tab-table", id=0):
with gr.Column():
table_output = gr.DataFrame(value=LEADERBOARD_DF_DISPLAY_INIT, label="Leaderboard Results", interactive=True, wrap=True)
gr.Markdown("---")
gr.Markdown("### Display Options")
model_filter_choices = LEADERBOARD_DF_ORIGINAL[('Model', 'Model')].unique().tolist()
model_selector = gr.CheckboxGroup(
choices=model_filter_choices,
value=model_filter_choices,
label="Filter by Model types:"
)
def update_table(selected_models_from_filter):
filtered_df_orig = LEADERBOARD_DF_ORIGINAL.copy()
if not selected_models_from_filter:
filtered_df_orig = LEADERBOARD_DF_ORIGINAL[LEADERBOARD_DF_ORIGINAL[('Model', 'Model')].isin([])]
else:
valid_selected_models = [model for model in selected_models_from_filter if model in model_filter_choices]
if not valid_selected_models:
filtered_df_orig = LEADERBOARD_DF_ORIGINAL[LEADERBOARD_DF_ORIGINAL[('Model', 'Model')].isin([])]
else:
filtered_df_orig = LEADERBOARD_DF_ORIGINAL[LEADERBOARD_DF_ORIGINAL[('Model', 'Model')].isin(valid_selected_models)]
df_to_display = format_leaderboard_df_for_display(filtered_df_orig)
return gr.DataFrame.update(value=df_to_display)
model_selector.change(
fn=update_table,
inputs=[model_selector],
outputs=[table_output]
)
with gr.TabItem("📝 Bias-aware eval VLM ", elem_id="llm-benchmark-tab-table", id=2):
with gr.Column():
gr.Markdown("### Bias-Aware Evaluation Results")
bias_table_output = gr.DataFrame(value=BIAS_DF, label="Bias Evaluation Results", interactive=True, wrap=True)
gr.Markdown("---")
gr.Markdown("### Display Options for Bias Table")
bias_all_columns_list = BIAS_DF.columns.tolist()
bias_column_selector = gr.CheckboxGroup(
choices=bias_all_columns_list,
value=bias_all_columns_list,
label="Select Columns to Display:"
)
bias_type_filter_choices = BIAS_DF["Bias_Type"].unique().tolist() if "Bias_Type" in BIAS_DF.columns else []
bias_type_selector = gr.CheckboxGroup(
choices=bias_type_filter_choices,
value=bias_type_filter_choices,
label="Filter by Bias Type:"
)
bias_model_filter_choices = BIAS_DF["Model"].unique().tolist() if "Model" in BIAS_DF.columns else []
bias_model_selector_for_bias_tab = gr.CheckboxGroup(
choices=bias_model_filter_choices,
value=bias_model_filter_choices,
label="Filter by Model:"
)
def update_bias_table(selected_cols, selected_bias_types, selected_models):
temp_df = BIAS_DF.copy()
if selected_bias_types and "Bias_Type" in temp_df.columns:
temp_df = temp_df[temp_df["Bias_Type"].isin(selected_bias_types)]
elif not selected_bias_types and "Bias_Type" in temp_df.columns:
temp_df = pd.DataFrame(columns=BIAS_DF.columns)
if selected_models and "Model" in temp_df.columns:
temp_df = temp_df[temp_df["Model"].isin(selected_models)]
elif not selected_models and "Model" in temp_df.columns:
if not selected_bias_types:
temp_df = pd.DataFrame(columns=BIAS_DF.columns)
elif "Bias_Type" in temp_df.columns and temp_df["Bias_Type"].isin(selected_bias_types).any():
temp_df = temp_df[~temp_df["Model"].isin(BIAS_DF["Model"].unique())]
valid_selected_cols = [col for col in selected_cols if col in temp_df.columns]
if not valid_selected_cols and not temp_df.empty:
final_df = temp_df
elif not valid_selected_cols and temp_df.empty:
final_df = pd.DataFrame(columns=selected_cols)
else:
final_df = temp_df[valid_selected_cols]
return gr.DataFrame.update(value=final_df)
bias_column_selector.change(fn=update_bias_table, inputs=[bias_column_selector, bias_type_selector, bias_model_selector_for_bias_tab], outputs=[bias_table_output])
bias_type_selector.change(fn=update_bias_table, inputs=[bias_column_selector, bias_type_selector, bias_model_selector_for_bias_tab], outputs=[bias_table_output])
bias_model_selector_for_bias_tab.change(fn=update_bias_table, inputs=[bias_column_selector, bias_type_selector, bias_model_selector_for_bias_tab], outputs=[bias_table_output])
with gr.TabItem("🧑🍳 User Type & Preference-Oriented Scores ", elem_id="llm-benchmark-tab-table", id=3):
with gr.Column():
gr.Markdown("### Preference-Oriented Scores by User Type and Model")
def create_preference_score_chart():
user_types = ['Detail-oriented', 'Risk-conscious', 'Accuracy-focused']
models = ['MiniGPT-4', 'InstructBLIP', 'LLaVA-1.5', 'mPLUG-Owl2', 'Qwen2-VL']
scores = np.array([
[0.20, 0.35, 0.45, 0.50, 0.85], # Detail-oriented
[0.40, 0.55, 0.67, 0.53, 0.58], # Risk-conscious
[0.20, 0.60, 0.72, 0.69, 0.75] # Accuracy-focused
])
x = np.arange(len(user_types))
width = 0.15
fig, ax = plt.subplots(figsize=(12, 7))
for i, model in enumerate(models):
ax.bar(x + i * width - (width * (len(models)-1)/2), scores[:, i], width, label=model)
ax.set_xlabel('User type', fontsize=12)
ax.set_ylabel('Preference-oriented score', fontsize=12)
ax.set_title('Preference-oriented scores by User Type and Model', fontsize=14)
ax.set_xticks(x)
ax.set_xticklabels(user_types, fontsize=10)
ax.legend(title='Model', bbox_to_anchor=(1.05, 1), loc='upper left')
plt.ylim(0, 1.1)
plt.grid(axis='y', linestyle='--', alpha=0.7)
plt.tight_layout(rect=[0, 0, 0.85, 1])
return fig
gr.Plot(value=create_preference_score_chart)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=20,
elem_id="citation-button",
show_copy_button=True,
)
gr.Markdown("---")
link_to_discussion = "https://huggingface.co/login?next=%2Fspaces%2Fnvidia%2FLOTUS-VLM-Bias%2Fdiscussions%2Fnew"
gr.HTML(f'''
<div style="text-align: center; margin-top: 20px; margin-bottom: 20px;">
<a href="{link_to_discussion}" target="_blank" rel="noopener noreferrer"
style="background-color: #007bff; color: white; padding: 10px 20px; text-decoration: none; border-radius: 5px; font-size: 16px;">
Submit Your Results / Open a New Discussion
</a>
</div>
''')
demo.queue(default_concurrency_limit=40).launch() |