Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -60,89 +60,18 @@ def transcribe_youtube_video(url, force_transcribe=False,use_api=False,api_token
|
|
60 |
|
61 |
def summarize_text(title,text,temperature,words,use_api=False,api_token=None,do_sample=False):
|
62 |
|
63 |
-
from
|
64 |
from langchain.prompts import PromptTemplate
|
65 |
-
from langchain.chains import
|
66 |
-
|
67 |
-
|
68 |
-
import transformers
|
69 |
-
from transformers import BitsAndBytesConfig
|
70 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
71 |
-
|
72 |
-
from langchain import HuggingFacePipeline
|
73 |
-
import torch
|
74 |
-
|
75 |
-
model_kwargs1 = {"temperature":temperature ,
|
76 |
-
"do_sample":do_sample,
|
77 |
-
"min_new_tokens":300-25,
|
78 |
-
"max_new_tokens":300+25,
|
79 |
-
'repetition_penalty':20.0
|
80 |
-
}
|
81 |
-
model_kwargs2 = {"temperature":temperature ,
|
82 |
-
"do_sample":do_sample,
|
83 |
-
"min_new_tokens":words,
|
84 |
-
"max_new_tokens":words+100,
|
85 |
-
'repetition_penalty':20.0
|
86 |
-
}
|
87 |
-
if not do_sample:
|
88 |
-
del model_kwargs1["temperature"]
|
89 |
-
del model_kwargs2["temperature"]
|
90 |
-
|
91 |
-
if use_api:
|
92 |
-
|
93 |
-
from langchain import HuggingFaceHub
|
94 |
-
|
95 |
-
# os.environ["HUGGINGFACEHUB_API_TOKEN"] = api_token
|
96 |
-
llm=HuggingFaceHub(
|
97 |
-
repo_id=llm_model_id, model_kwargs=model_kwargs1,
|
98 |
-
huggingfacehub_api_token=api_token
|
99 |
-
)
|
100 |
-
llm2=HuggingFaceHub(
|
101 |
-
repo_id=llm_model_id, model_kwargs=model_kwargs2,
|
102 |
-
huggingfacehub_api_token=api_token
|
103 |
-
)
|
104 |
-
summary_source = 'The summary was generated using {} via Hugging Face API.'.format(llm_model_id)
|
105 |
-
|
106 |
-
else:
|
107 |
-
quantization_config = BitsAndBytesConfig(
|
108 |
-
load_in_4bit=True,
|
109 |
-
bnb_4bit_compute_dtype=torch.float16,
|
110 |
-
bnb_4bit_quant_type="nf4",
|
111 |
-
bnb_4bit_use_double_quant=True,
|
112 |
-
)
|
113 |
-
|
114 |
-
tokenizer = AutoTokenizer.from_pretrained(llm_model_id)
|
115 |
-
model = AutoModelForCausalLM.from_pretrained(llm_model_id,
|
116 |
-
# quantization_config=quantization_config
|
117 |
-
)
|
118 |
-
model.to_bettertransformer()
|
119 |
-
|
120 |
-
pipeline = transformers.pipeline(
|
121 |
-
"text-generation",
|
122 |
-
model=model,
|
123 |
-
tokenizer=tokenizer,
|
124 |
-
torch_dtype=torch.bfloat16,
|
125 |
-
device_map="auto",
|
126 |
-
pad_token_id=tokenizer.eos_token_id,
|
127 |
-
**model_kwargs1,
|
128 |
-
)
|
129 |
-
pipeline2 = transformers.pipeline(
|
130 |
-
"text-generation",
|
131 |
-
model=model,
|
132 |
-
tokenizer=tokenizer,
|
133 |
-
torch_dtype=torch.bfloat16,
|
134 |
-
device_map="auto",
|
135 |
-
pad_token_id=tokenizer.eos_token_id,
|
136 |
-
**model_kwargs2,
|
137 |
-
)
|
138 |
-
llm = HuggingFacePipeline(pipeline=pipeline)
|
139 |
-
llm2 = HuggingFacePipeline(pipeline=pipeline2)
|
140 |
-
|
141 |
-
summary_source = 'The summary was generated using {} hosted locally.'.format(llm_model_id)
|
142 |
|
|
|
|
|
|
|
143 |
|
144 |
# Map templates
|
145 |
-
|
146 |
As an AI tasked with summarizing a video, your objective is to distill the key insights without introducing new information. This prompt aims to provide a concise summary.\n
|
147 |
----------------------- \n
|
148 |
TITLE: `{title}`\n
|
@@ -200,7 +129,7 @@ def summarize_text(title,text,temperature,words,use_api=False,api_token=None,do_
|
|
200 |
template = combine_template,
|
201 |
input_variables = ['title','doc_summaries','words']
|
202 |
)
|
203 |
-
combine_chain = LLMChain(llm=
|
204 |
|
205 |
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
|
206 |
combine_documents_chain = StuffDocumentsChain(
|
@@ -242,7 +171,7 @@ def summarize_text(title,text,temperature,words,use_api=False,api_token=None,do_
|
|
242 |
summary = map_reduce_chain.run({'input_documents':docs, 'title':title, 'words':words})
|
243 |
|
244 |
try:
|
245 |
-
del(map_reduce_chain,reduce_documents_chain,combine_chain,collapse_documents_chain,map_chain,collapse_chain,llm
|
246 |
except:
|
247 |
pass
|
248 |
torch.cuda.empty_cache()
|
|
|
60 |
|
61 |
def summarize_text(title,text,temperature,words,use_api=False,api_token=None,do_sample=False):
|
62 |
|
63 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
64 |
from langchain.prompts import PromptTemplate
|
65 |
+
from langchain.chains import LLMChain
|
66 |
+
GOOGLE_API_KEY = os.environ["GOOGLE_API_KEY"]
|
67 |
+
genai.configure()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
llm = ChatGoogleGenerativeAI(model="gemini-pro", google_api_key=GOOGLE_API_KEY)
|
70 |
+
llm_model_id = 'Gemini-Pro'
|
71 |
+
summary_source = 'The summary was generated using {} via Hugging Face API.'.format(llm_model_id)
|
72 |
|
73 |
# Map templates
|
74 |
+
prompt_template = """
|
75 |
As an AI tasked with summarizing a video, your objective is to distill the key insights without introducing new information. This prompt aims to provide a concise summary.\n
|
76 |
----------------------- \n
|
77 |
TITLE: `{title}`\n
|
|
|
129 |
template = combine_template,
|
130 |
input_variables = ['title','doc_summaries','words']
|
131 |
)
|
132 |
+
combine_chain = LLMChain(llm=llm, prompt=combine_prompt)
|
133 |
|
134 |
# Takes a list of documents, combines them into a single string, and passes this to an LLMChain
|
135 |
combine_documents_chain = StuffDocumentsChain(
|
|
|
171 |
summary = map_reduce_chain.run({'input_documents':docs, 'title':title, 'words':words})
|
172 |
|
173 |
try:
|
174 |
+
del(map_reduce_chain,reduce_documents_chain,combine_chain,collapse_documents_chain,map_chain,collapse_chain,llm)
|
175 |
except:
|
176 |
pass
|
177 |
torch.cuda.empty_cache()
|