from fastapi import FastAPI, File, UploadFile, HTTPException from torchvision import models, transforms from PIL import Image import torch import io app = FastAPI() # Load the pre-trained VGG16 model model = models.vgg16() num_features_in = model.classifier[6].in_features model.classifier[6] = torch.nn.Linear(num_features_in, 1) model.load_state_dict(torch.load('cat_dog_classifier.pt')) model.eval() def preprocess_image(image): img_transform = transforms.Compose([ transforms.Resize((224, 224)), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ]) img = img_transform(image).unsqueeze(0) # Add a batch dimension return img @app.post("/predict/") async def predict_image(file: UploadFile = File(...)): try: contents = await file.read() image = Image.open(io.BytesIO(contents)) image_tensor = preprocess_image(image) with torch.no_grad(): output = model(image_tensor) prediction = torch.sigmoid(output.squeeze()).item() predicted_class = "Dog" if prediction > 0.5 else "Cat" return {"class": predicted_class} except Exception as e: raise HTTPException(status_code=400, detail=str(e))