Commit
·
a187c90
1
Parent(s):
14ba298
Init
Browse files
app.py
CHANGED
@@ -1,64 +1,61 @@
|
|
1 |
import gradio as gr
|
|
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
""
|
5 |
-
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
top_p,
|
17 |
):
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
41 |
|
|
|
|
|
42 |
|
43 |
-
""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
-
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import os
|
3 |
from huggingface_hub import InferenceClient
|
4 |
|
5 |
+
# Get the token from the "HF_TOKEN" environment variable
|
6 |
+
token = os.getenv("HF_TOKEN")
|
|
|
|
|
7 |
|
8 |
+
# Create a client for the Salesforce/codet5-large model using the token
|
9 |
+
client = InferenceClient("Salesforce/codet5-large", token=token)
|
10 |
|
11 |
+
|
12 |
+
def generate_code(
|
13 |
+
task_description,
|
14 |
+
max_tokens,
|
15 |
+
temperature,
|
16 |
+
top_p,
|
|
|
17 |
):
|
18 |
+
# 2. Create a prompt using task description
|
19 |
+
prompt = task_description
|
20 |
+
|
21 |
+
# 3. Generate code based on the description
|
22 |
+
response = client.text_generation(
|
23 |
+
prompt,
|
24 |
+
max_new_tokens=max_tokens,
|
25 |
+
temperature=temperature,
|
26 |
+
top_p=top_p,
|
27 |
+
)
|
28 |
|
29 |
+
# Since the response is already a string, just return it
|
30 |
+
generated_code = response
|
31 |
+
return generated_code
|
|
|
|
|
32 |
|
|
|
33 |
|
34 |
+
# 4. Create Gradio interface
|
35 |
+
with gr.Blocks() as demo:
|
36 |
+
gr.Markdown("# 🚀 CodeT5 Code Generator")
|
37 |
|
38 |
+
with gr.Row():
|
39 |
+
task_input = gr.Textbox(
|
40 |
+
lines=3, placeholder="Describe the task in natural language...", label="Task Description"
|
41 |
+
)
|
|
|
|
|
|
|
|
|
42 |
|
43 |
+
with gr.Row():
|
44 |
+
max_tokens = gr.Slider(1, 2048, value=100, step=1, label="Max Tokens")
|
45 |
+
temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
|
46 |
+
top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
|
47 |
|
48 |
+
with gr.Row():
|
49 |
+
submit_button = gr.Button("Generate Code 🚀")
|
50 |
|
51 |
+
output = gr.Textbox(lines=10, label="Generated Code")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
+
# 5. Button click triggers code generation
|
54 |
+
submit_button.click(
|
55 |
+
generate_code,
|
56 |
+
inputs=[task_input, max_tokens, temperature, top_p],
|
57 |
+
outputs=output,
|
58 |
+
)
|
59 |
|
60 |
if __name__ == "__main__":
|
61 |
demo.launch()
|