oleksandr-zakharchuk-dev commited on
Commit
a187c90
·
1 Parent(s): 14ba298
Files changed (1) hide show
  1. app.py +44 -47
app.py CHANGED
@@ -1,64 +1,61 @@
1
  import gradio as gr
 
2
  from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
  ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
41
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
  import gradio as gr
2
+ import os
3
  from huggingface_hub import InferenceClient
4
 
5
+ # Get the token from the "HF_TOKEN" environment variable
6
+ token = os.getenv("HF_TOKEN")
 
 
7
 
8
+ # Create a client for the Salesforce/codet5-large model using the token
9
+ client = InferenceClient("Salesforce/codet5-large", token=token)
10
 
11
+
12
+ def generate_code(
13
+ task_description,
14
+ max_tokens,
15
+ temperature,
16
+ top_p,
 
17
  ):
18
+ # 2. Create a prompt using task description
19
+ prompt = task_description
20
+
21
+ # 3. Generate code based on the description
22
+ response = client.text_generation(
23
+ prompt,
24
+ max_new_tokens=max_tokens,
25
+ temperature=temperature,
26
+ top_p=top_p,
27
+ )
28
 
29
+ # Since the response is already a string, just return it
30
+ generated_code = response
31
+ return generated_code
 
 
32
 
 
33
 
34
+ # 4. Create Gradio interface
35
+ with gr.Blocks() as demo:
36
+ gr.Markdown("# 🚀 CodeT5 Code Generator")
37
 
38
+ with gr.Row():
39
+ task_input = gr.Textbox(
40
+ lines=3, placeholder="Describe the task in natural language...", label="Task Description"
41
+ )
 
 
 
 
42
 
43
+ with gr.Row():
44
+ max_tokens = gr.Slider(1, 2048, value=100, step=1, label="Max Tokens")
45
+ temperature = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
46
+ top_p = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-p")
47
 
48
+ with gr.Row():
49
+ submit_button = gr.Button("Generate Code 🚀")
50
 
51
+ output = gr.Textbox(lines=10, label="Generated Code")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ # 5. Button click triggers code generation
54
+ submit_button.click(
55
+ generate_code,
56
+ inputs=[task_input, max_tokens, temperature, top_p],
57
+ outputs=output,
58
+ )
59
 
60
  if __name__ == "__main__":
61
  demo.launch()