File size: 2,277 Bytes
1dc26c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f7ac5e
1dc26c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f99e47
1dc26c7
 
 
 
 
04513cf
3398a0c
1dc26c7
 
 
 
 
3398a0c
ccbf06e
51f04f9
1dc26c7
 
 
6dcd6be
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
from argparse import ArgumentParser
from typing import Dict
import torch
from PIL import Image
import modules.transforms as transforms
from modules.primaps import PriMaPs
from modules.backbone.dino.dinovit import DinoFeaturizerv2
from modules.visualization import visualize_demo
import gradio as gr
    
    
def gradio_primaps(image_path, threshold, architecture):
    '''
    Gradio demo to visualize PriMaPs for a single image.
    '''    
    
    device='cpu'   
    resize_to = 320 if 'v2' not in architecture else 322
    patch_size = 8 if 'v2' not in architecture else 14
    
    # get SLL image encoder and primaps module
    net = DinoFeaturizerv2(architecture, patch_size)
    net.to(device)
    primaps_module = PriMaPs(threshold=threshold,
                             ignore_id=255)
    
    # get transforms
    demo_transforms = transforms.Compose([transforms.ToTensor(),
                    transforms.Resize(resize_to), 
                    transforms.CenterCrop([resize_to, resize_to]),
                    transforms.Normalize()])
    
    # load image and apply transforms
    image = Image.open(image_path)
    image, _ = demo_transforms(image, torch.zeros(image.size))
    image.to(device)
    # get SSL features
    feats = net(image.unsqueeze(0).to(device), n=1).squeeze()
    # get primaps pseudo labels
    primaps = primaps_module._get_pseudo(image, feats, torch.zeros(image.shape[1:]))
    # visualize overlay
    return visualize_demo(image, primaps)
        

if __name__ == '__main__':       
    # Gradio interface
    interface = gr.Interface(
        fn=gradio_primaps,
        inputs=[
            gr.Image(type="filepath", label="Image"),
            gr.Slider(0.0, 1.0, step=0.05, value=0.4, label="Threshold"),
            gr.Dropdown(choices=['dino_vits', 'dino_vitb', 'dinov2_vits', 'dinov2_vitb'], value='dino_vits', label="SSL Features"),
        ],
        outputs=gr.Image(label="PriMaPs"),
        title="PriMaPs Demo",
        description="Upload an image and adjust the threshold to visualize PriMaPs.",
        examples=[
            ["example.jpg", 0.4, 'dino_vits'],
        ],
        article="For more details, visit the [project page](https://visinf.github.io/primaps)."
    )

    # Launch the app
    interface.launch()