PriMaPs / datasets /cocostuff.py
Oliver Hahn
add demo
c4cebcf
from os.path import join
import numpy as np
import torch.multiprocessing
from PIL import Image
from torch.utils.data import Dataset
def bit_get(val, idx):
"""Gets the bit value.
Args:
val: Input value, int or numpy int array.
idx: Which bit of the input val.
Returns:
The "idx"-th bit of input val.
"""
return (val >> idx) & 1
def create_pascal_label_colormap():
"""Creates a label colormap used in PASCAL VOC segmentation benchmark.
Returns:
A colormap for visualizing segmentation results.
"""
colormap = np.zeros((512, 3), dtype=int)
ind = np.arange(512, dtype=int)
for shift in reversed(list(range(8))):
for channel in range(3):
colormap[:, channel] |= bit_get(ind, channel) << shift
ind >>= 3
return colormap
def get_coco_labeldata():
cls_names = ["electronic", "appliance", "food", "furniture", "indoor", "kitchen", "accessory", "animal", "outdoor", "person", "sports", "vehicle", "ceiling", "floor", "food", "furniture", "rawmaterial", "textile", "wall", "window", "building", "ground", "plant", "sky", "solid", "structural", "water"]
colormap = create_pascal_label_colormap()
colormap[27] = np.array([0, 0, 0])
return cls_names, colormap
class cocostuff(Dataset):
def __init__(self, root, split, transforms, #target_transform,
coarse_labels=None, exclude_things=None, subset=7): #None):
super(cocostuff, self).__init__()
self.split = split
self.root = root
self.coarse_labels = coarse_labels
self.transforms = transforms
#self.label_transform = target_transform
self.subset = subset
self.exclude_things = exclude_things
if self.subset is None:
self.image_list = "Coco164kFull_Stuff_Coarse.txt"
elif self.subset == 6: # IIC Coarse
self.image_list = "Coco164kFew_Stuff_6.txt"
elif self.subset == 7: # IIC Fine
self.image_list = "Coco164kFull_Stuff_Coarse_7.txt"
assert self.split in ["train", "val", "train+val"]
split_dirs = {
"train": ["train2017"],
"val": ["val2017"],
"train+val": ["train2017", "val2017"]
}
self.image_files = []
self.label_files = []
for split_dir in split_dirs[self.split]:
with open(join(self.root, "curated", split_dir, self.image_list), "r") as f:
img_ids = [fn.rstrip() for fn in f.readlines()]
for img_id in img_ids:
self.image_files.append(join(self.root, "images", split_dir, img_id + ".jpg"))
self.label_files.append(join(self.root, "annotations", split_dir, img_id + ".png"))
self.fine_to_coarse = {0: 9, 1: 11, 2: 11, 3: 11, 4: 11, 5: 11, 6: 11, 7: 11, 8: 11, 9: 8, 10: 8, 11: 8, 12: 8,
13: 8, 14: 8, 15: 7, 16: 7, 17: 7, 18: 7, 19: 7, 20: 7, 21: 7, 22: 7, 23: 7, 24: 7,
25: 6, 26: 6, 27: 6, 28: 6, 29: 6, 30: 6, 31: 6, 32: 6, 33: 10, 34: 10, 35: 10, 36: 10,
37: 10, 38: 10, 39: 10, 40: 10, 41: 10, 42: 10, 43: 5, 44: 5, 45: 5, 46: 5, 47: 5, 48: 5,
49: 5, 50: 5, 51: 2, 52: 2, 53: 2, 54: 2, 55: 2, 56: 2, 57: 2, 58: 2, 59: 2, 60: 2,
61: 3, 62: 3, 63: 3, 64: 3, 65: 3, 66: 3, 67: 3, 68: 3, 69: 3, 70: 3, 71: 0, 72: 0,
73: 0, 74: 0, 75: 0, 76: 0, 77: 1, 78: 1, 79: 1, 80: 1, 81: 1, 82: 1, 83: 4, 84: 4,
85: 4, 86: 4, 87: 4, 88: 4, 89: 4, 90: 4, 91: 17, 92: 17, 93: 22, 94: 20, 95: 20, 96: 22,
97: 15, 98: 25, 99: 16, 100: 13, 101: 12, 102: 12, 103: 17, 104: 17, 105: 23, 106: 15,
107: 15, 108: 17, 109: 15, 110: 21, 111: 15, 112: 25, 113: 13, 114: 13, 115: 13, 116: 13,
117: 13, 118: 22, 119: 26, 120: 14, 121: 14, 122: 15, 123: 22, 124: 21, 125: 21, 126: 24,
127: 20, 128: 22, 129: 15, 130: 17, 131: 16, 132: 15, 133: 22, 134: 24, 135: 21, 136: 17,
137: 25, 138: 16, 139: 21, 140: 17, 141: 22, 142: 16, 143: 21, 144: 21, 145: 25, 146: 21,
147: 26, 148: 21, 149: 24, 150: 20, 151: 17, 152: 14, 153: 21, 154: 26, 155: 15, 156: 23,
157: 20, 158: 21, 159: 24, 160: 15, 161: 24, 162: 22, 163: 25, 164: 15, 165: 20, 166: 17,
167: 17, 168: 22, 169: 14, 170: 18, 171: 18, 172: 18, 173: 18, 174: 18, 175: 18, 176: 18,
177: 26, 178: 26, 179: 19, 180: 19, 181: 24}
self._label_names = [
"ground-stuff",
"plant-stuff",
"sky-stuff",
]
self.cocostuff3_coarse_classes = [23, 22, 21]
self.first_stuff_index = 12
def __getitem__(self, index):
image_path = self.image_files[index]
label_path = self.label_files[index]
seed = np.random.randint(2147483647)
img, label = self.transforms(Image.open(image_path).convert("RGB"), Image.open(label_path))
label[label == 255] = -1 # to be consistent with 10k
coarse_label = torch.zeros_like(label)
for fine, coarse in self.fine_to_coarse.items():
coarse_label[label == fine] = coarse
coarse_label[label == -1] = 255 #-1
if self.coarse_labels:
coarser_labels = -torch.ones_like(label)
for i, c in enumerate(self.cocostuff3_coarse_classes):
coarser_labels[coarse_label == c] = i
return img, coarser_labels, coarser_labels >= 0
else:
if self.exclude_things:
return img, coarse_label - self.first_stuff_index, (coarse_label >= self.first_stuff_index)
else:
return img, coarse_label, image_path
def __len__(self):
return len(self.image_files)