Oliver Hahn commited on
Commit
0554b2b
·
1 Parent(s): 323c3a8
Files changed (34) hide show
  1. datasets/__init__.py +4 -0
  2. datasets/__pycache__/__init__.cpython-310.pyc +0 -0
  3. datasets/__pycache__/__init__.cpython-311.pyc +0 -0
  4. datasets/__pycache__/__init__.cpython-36.pyc +0 -0
  5. datasets/__pycache__/__init__.cpython-37.pyc +0 -0
  6. datasets/__pycache__/__init__.cpython-38.pyc +0 -0
  7. datasets/__pycache__/__init__.cpython-39.pyc +0 -0
  8. datasets/__pycache__/cityscapes.cpython-310.pyc +0 -0
  9. datasets/__pycache__/cityscapes.cpython-311.pyc +0 -0
  10. datasets/__pycache__/cityscapes.cpython-36.pyc +0 -0
  11. datasets/__pycache__/cityscapes.cpython-37.pyc +0 -0
  12. datasets/__pycache__/cityscapes.cpython-38.pyc +0 -0
  13. datasets/__pycache__/cityscapes.cpython-39.pyc +0 -0
  14. datasets/__pycache__/cocostuff.cpython-310.pyc +0 -0
  15. datasets/__pycache__/cocostuff.cpython-311.pyc +0 -0
  16. datasets/__pycache__/cocostuff.cpython-36.pyc +0 -0
  17. datasets/__pycache__/cocostuff.cpython-37.pyc +0 -0
  18. datasets/__pycache__/cocostuff.cpython-38.pyc +0 -0
  19. datasets/__pycache__/cocostuff.cpython-39.pyc +0 -0
  20. datasets/__pycache__/potsdam.cpython-310.pyc +0 -0
  21. datasets/__pycache__/potsdam.cpython-311.pyc +0 -0
  22. datasets/__pycache__/potsdam.cpython-36.pyc +0 -0
  23. datasets/__pycache__/potsdam.cpython-37.pyc +0 -0
  24. datasets/__pycache__/potsdam.cpython-38.pyc +0 -0
  25. datasets/__pycache__/potsdam.cpython-39.pyc +0 -0
  26. datasets/__pycache__/precomputed.cpython-310.pyc +0 -0
  27. datasets/__pycache__/precomputed.cpython-311.pyc +0 -0
  28. datasets/__pycache__/precomputed.cpython-36.pyc +0 -0
  29. datasets/__pycache__/precomputed.cpython-37.pyc +0 -0
  30. datasets/__pycache__/precomputed.cpython-38.pyc +0 -0
  31. datasets/__pycache__/precomputed.cpython-39.pyc +0 -0
  32. datasets/cocostuff.py +125 -0
  33. datasets/potsdam.py +121 -0
  34. datasets/precomputed.py +43 -0
datasets/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ from datasets.cityscapes import *
2
+ from datasets.cocostuff import *
3
+ from datasets.potsdam import *
4
+ from datasets.precomputed import *
datasets/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (289 Bytes). View file
 
datasets/__pycache__/__init__.cpython-311.pyc ADDED
Binary file (343 Bytes). View file
 
datasets/__pycache__/__init__.cpython-36.pyc ADDED
Binary file (279 Bytes). View file
 
datasets/__pycache__/__init__.cpython-37.pyc ADDED
Binary file (283 Bytes). View file
 
datasets/__pycache__/__init__.cpython-38.pyc ADDED
Binary file (287 Bytes). View file
 
datasets/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (287 Bytes). View file
 
datasets/__pycache__/cityscapes.cpython-310.pyc ADDED
Binary file (3.2 kB). View file
 
datasets/__pycache__/cityscapes.cpython-311.pyc ADDED
Binary file (4.66 kB). View file
 
datasets/__pycache__/cityscapes.cpython-36.pyc ADDED
Binary file (3.44 kB). View file
 
datasets/__pycache__/cityscapes.cpython-37.pyc ADDED
Binary file (3.44 kB). View file
 
datasets/__pycache__/cityscapes.cpython-38.pyc ADDED
Binary file (5.42 kB). View file
 
datasets/__pycache__/cityscapes.cpython-39.pyc ADDED
Binary file (3.17 kB). View file
 
datasets/__pycache__/cocostuff.cpython-310.pyc ADDED
Binary file (6.38 kB). View file
 
datasets/__pycache__/cocostuff.cpython-311.pyc ADDED
Binary file (10.9 kB). View file
 
datasets/__pycache__/cocostuff.cpython-36.pyc ADDED
Binary file (5.23 kB). View file
 
datasets/__pycache__/cocostuff.cpython-37.pyc ADDED
Binary file (5.18 kB). View file
 
datasets/__pycache__/cocostuff.cpython-38.pyc ADDED
Binary file (5.53 kB). View file
 
datasets/__pycache__/cocostuff.cpython-39.pyc ADDED
Binary file (5.2 kB). View file
 
datasets/__pycache__/potsdam.cpython-310.pyc ADDED
Binary file (4.03 kB). View file
 
datasets/__pycache__/potsdam.cpython-311.pyc ADDED
Binary file (8.22 kB). View file
 
datasets/__pycache__/potsdam.cpython-36.pyc ADDED
Binary file (4.07 kB). View file
 
datasets/__pycache__/potsdam.cpython-37.pyc ADDED
Binary file (4.08 kB). View file
 
datasets/__pycache__/potsdam.cpython-38.pyc ADDED
Binary file (4.1 kB). View file
 
datasets/__pycache__/potsdam.cpython-39.pyc ADDED
Binary file (4.07 kB). View file
 
datasets/__pycache__/precomputed.cpython-310.pyc ADDED
Binary file (1.49 kB). View file
 
datasets/__pycache__/precomputed.cpython-311.pyc ADDED
Binary file (3.07 kB). View file
 
datasets/__pycache__/precomputed.cpython-36.pyc ADDED
Binary file (1.47 kB). View file
 
datasets/__pycache__/precomputed.cpython-37.pyc ADDED
Binary file (1.48 kB). View file
 
datasets/__pycache__/precomputed.cpython-38.pyc ADDED
Binary file (1.53 kB). View file
 
datasets/__pycache__/precomputed.cpython-39.pyc ADDED
Binary file (1.49 kB). View file
 
datasets/cocostuff.py ADDED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from os.path import join
2
+ import numpy as np
3
+ import torch.multiprocessing
4
+ from PIL import Image
5
+ from torch.utils.data import Dataset
6
+
7
+ def bit_get(val, idx):
8
+ """Gets the bit value.
9
+ Args:
10
+ val: Input value, int or numpy int array.
11
+ idx: Which bit of the input val.
12
+ Returns:
13
+ The "idx"-th bit of input val.
14
+ """
15
+ return (val >> idx) & 1
16
+
17
+
18
+ def create_pascal_label_colormap():
19
+ """Creates a label colormap used in PASCAL VOC segmentation benchmark.
20
+ Returns:
21
+ A colormap for visualizing segmentation results.
22
+ """
23
+ colormap = np.zeros((512, 3), dtype=int)
24
+ ind = np.arange(512, dtype=int)
25
+
26
+ for shift in reversed(list(range(8))):
27
+ for channel in range(3):
28
+ colormap[:, channel] |= bit_get(ind, channel) << shift
29
+ ind >>= 3
30
+
31
+ return colormap
32
+
33
+ def get_coco_labeldata():
34
+ cls_names = ["electronic", "appliance", "food", "furniture", "indoor", "kitchen", "accessory", "animal", "outdoor", "person", "sports", "vehicle", "ceiling", "floor", "food", "furniture", "rawmaterial", "textile", "wall", "window", "building", "ground", "plant", "sky", "solid", "structural", "water"]
35
+ colormap = create_pascal_label_colormap()
36
+ colormap[27] = np.array([0, 0, 0])
37
+ return cls_names, colormap
38
+
39
+ class cocostuff(Dataset):
40
+ def __init__(self, root, split, transforms, #target_transform,
41
+ coarse_labels=None, exclude_things=None, subset=7): #None):
42
+ super(cocostuff, self).__init__()
43
+ self.split = split
44
+ self.root = root
45
+ self.coarse_labels = coarse_labels
46
+ self.transforms = transforms
47
+ #self.label_transform = target_transform
48
+ self.subset = subset
49
+ self.exclude_things = exclude_things
50
+
51
+ if self.subset is None:
52
+ self.image_list = "Coco164kFull_Stuff_Coarse.txt"
53
+ elif self.subset == 6: # IIC Coarse
54
+ self.image_list = "Coco164kFew_Stuff_6.txt"
55
+ elif self.subset == 7: # IIC Fine
56
+ self.image_list = "Coco164kFull_Stuff_Coarse_7.txt"
57
+
58
+ assert self.split in ["train", "val", "train+val"]
59
+ split_dirs = {
60
+ "train": ["train2017"],
61
+ "val": ["val2017"],
62
+ "train+val": ["train2017", "val2017"]
63
+ }
64
+
65
+ self.image_files = []
66
+ self.label_files = []
67
+ for split_dir in split_dirs[self.split]:
68
+ with open(join(self.root, "curated", split_dir, self.image_list), "r") as f:
69
+ img_ids = [fn.rstrip() for fn in f.readlines()]
70
+ for img_id in img_ids:
71
+ self.image_files.append(join(self.root, "images", split_dir, img_id + ".jpg"))
72
+ self.label_files.append(join(self.root, "annotations", split_dir, img_id + ".png"))
73
+
74
+ self.fine_to_coarse = {0: 9, 1: 11, 2: 11, 3: 11, 4: 11, 5: 11, 6: 11, 7: 11, 8: 11, 9: 8, 10: 8, 11: 8, 12: 8,
75
+ 13: 8, 14: 8, 15: 7, 16: 7, 17: 7, 18: 7, 19: 7, 20: 7, 21: 7, 22: 7, 23: 7, 24: 7,
76
+ 25: 6, 26: 6, 27: 6, 28: 6, 29: 6, 30: 6, 31: 6, 32: 6, 33: 10, 34: 10, 35: 10, 36: 10,
77
+ 37: 10, 38: 10, 39: 10, 40: 10, 41: 10, 42: 10, 43: 5, 44: 5, 45: 5, 46: 5, 47: 5, 48: 5,
78
+ 49: 5, 50: 5, 51: 2, 52: 2, 53: 2, 54: 2, 55: 2, 56: 2, 57: 2, 58: 2, 59: 2, 60: 2,
79
+ 61: 3, 62: 3, 63: 3, 64: 3, 65: 3, 66: 3, 67: 3, 68: 3, 69: 3, 70: 3, 71: 0, 72: 0,
80
+ 73: 0, 74: 0, 75: 0, 76: 0, 77: 1, 78: 1, 79: 1, 80: 1, 81: 1, 82: 1, 83: 4, 84: 4,
81
+ 85: 4, 86: 4, 87: 4, 88: 4, 89: 4, 90: 4, 91: 17, 92: 17, 93: 22, 94: 20, 95: 20, 96: 22,
82
+ 97: 15, 98: 25, 99: 16, 100: 13, 101: 12, 102: 12, 103: 17, 104: 17, 105: 23, 106: 15,
83
+ 107: 15, 108: 17, 109: 15, 110: 21, 111: 15, 112: 25, 113: 13, 114: 13, 115: 13, 116: 13,
84
+ 117: 13, 118: 22, 119: 26, 120: 14, 121: 14, 122: 15, 123: 22, 124: 21, 125: 21, 126: 24,
85
+ 127: 20, 128: 22, 129: 15, 130: 17, 131: 16, 132: 15, 133: 22, 134: 24, 135: 21, 136: 17,
86
+ 137: 25, 138: 16, 139: 21, 140: 17, 141: 22, 142: 16, 143: 21, 144: 21, 145: 25, 146: 21,
87
+ 147: 26, 148: 21, 149: 24, 150: 20, 151: 17, 152: 14, 153: 21, 154: 26, 155: 15, 156: 23,
88
+ 157: 20, 158: 21, 159: 24, 160: 15, 161: 24, 162: 22, 163: 25, 164: 15, 165: 20, 166: 17,
89
+ 167: 17, 168: 22, 169: 14, 170: 18, 171: 18, 172: 18, 173: 18, 174: 18, 175: 18, 176: 18,
90
+ 177: 26, 178: 26, 179: 19, 180: 19, 181: 24}
91
+
92
+ self._label_names = [
93
+ "ground-stuff",
94
+ "plant-stuff",
95
+ "sky-stuff",
96
+ ]
97
+ self.cocostuff3_coarse_classes = [23, 22, 21]
98
+ self.first_stuff_index = 12
99
+
100
+ def __getitem__(self, index):
101
+ image_path = self.image_files[index]
102
+ label_path = self.label_files[index]
103
+ seed = np.random.randint(2147483647)
104
+
105
+ img, label = self.transforms(Image.open(image_path).convert("RGB"), Image.open(label_path))
106
+
107
+ label[label == 255] = -1 # to be consistent with 10k
108
+ coarse_label = torch.zeros_like(label)
109
+ for fine, coarse in self.fine_to_coarse.items():
110
+ coarse_label[label == fine] = coarse
111
+ coarse_label[label == -1] = 255 #-1
112
+
113
+ if self.coarse_labels:
114
+ coarser_labels = -torch.ones_like(label)
115
+ for i, c in enumerate(self.cocostuff3_coarse_classes):
116
+ coarser_labels[coarse_label == c] = i
117
+ return img, coarser_labels, coarser_labels >= 0
118
+ else:
119
+ if self.exclude_things:
120
+ return img, coarse_label - self.first_stuff_index, (coarse_label >= self.first_stuff_index)
121
+ else:
122
+ return img, coarse_label, image_path
123
+
124
+ def __len__(self):
125
+ return len(self.image_files)
datasets/potsdam.py ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ from os.path import join
4
+ import numpy as np
5
+ import torch.multiprocessing
6
+ from scipy.io import loadmat
7
+ from torchvision.transforms.functional import to_pil_image
8
+ from torch.utils.data import Dataset
9
+
10
+ def get_pd_labeldata():
11
+ cls_names = ['road', 'building', 'vegetation']
12
+ colormap = np.array([
13
+ [58, 0, 68], #[158, 0, 0],[58, 0, 68],
14
+ [0, 130, 122], #[107, 130, 148],
15
+ [255, 230, 0], #[101, 192, 0],[0, 130, 122],
16
+ [0, 0, 0]])
17
+ return cls_names, colormap
18
+
19
+ class potsdam(Dataset):
20
+ def __init__(self, transforms, split, root):
21
+ super(potsdam, self).__init__()
22
+ self.split = split
23
+ self.root = root
24
+ self.transform = transforms
25
+ split_files = {
26
+ "train": ["labelled_train.txt"],
27
+ "unlabelled_train": ["unlabelled_train.txt"],
28
+ # "train": ["unlabelled_train.txt"],
29
+ "val": ["labelled_test.txt"],
30
+ "train+val": ["labelled_train.txt", "labelled_test.txt"],
31
+ "all": ["all.txt"]
32
+ }
33
+ assert self.split in split_files.keys()
34
+
35
+ self.files = []
36
+ for split_file in split_files[self.split]:
37
+ with open(join(self.root, split_file), "r") as f:
38
+ self.files.extend(fn.rstrip() for fn in f.readlines())
39
+
40
+ self.coarse_labels = True
41
+ self.fine_to_coarse = {0: 0, 4: 0, # roads and cars
42
+ 1: 1, 5: 1, # buildings and clutter
43
+ 2: 2, 3: 2, # vegetation and trees
44
+ }
45
+
46
+ def __getitem__(self, index):
47
+ image_id = self.files[index]
48
+ img = loadmat(join(self.root, "imgs", image_id + ".mat"))["img"]
49
+ img = to_pil_image(torch.from_numpy(img).permute(2, 0, 1)[:3]) # TODO add ir channel back
50
+ try:
51
+ label = loadmat(join(self.root, "gt", image_id + ".mat"))["gt"]
52
+ label = to_pil_image(torch.from_numpy(label).unsqueeze(-1).permute(2, 0, 1))
53
+ except FileNotFoundError:
54
+ label = to_pil_image(torch.ones(1, img.height, img.width))
55
+
56
+ img, label = self.transform(img, label)
57
+
58
+ if self.coarse_labels:
59
+ new_label_map = torch.ones_like(label)*255
60
+ for fine, coarse in self.fine_to_coarse.items():
61
+ new_label_map[label == fine] = coarse
62
+ label = new_label_map
63
+
64
+ # mask = (label > 0).to(torch.float32)
65
+ return img, label, image_id
66
+
67
+ def __len__(self):
68
+ return len(self.files)
69
+
70
+ classes = ['road', 'building', 'vegetation']
71
+
72
+
73
+ class PotsdamRaw(Dataset):
74
+ def __init__(self, root, image_set, transform, target_transform, coarse_labels):
75
+ super(PotsdamRaw, self).__init__()
76
+ self.split = image_set
77
+ self.root = os.path.join(root, "potsdamraw", "processed")
78
+ self.transform = transform
79
+ self.target_transform = target_transform
80
+ self.files = []
81
+ for im_num in range(38):
82
+ for i_h in range(15):
83
+ for i_w in range(15):
84
+ self.files.append("{}_{}_{}.mat".format(im_num, i_h, i_w))
85
+
86
+ self.coarse_labels = coarse_labels
87
+ self.fine_to_coarse = {0: 0, 4: 0, # roads and cars
88
+ 1: 1, 5: 1, # buildings and clutter
89
+ 2: 2, 3: 2, # vegetation and trees
90
+ 255: -1
91
+ }
92
+
93
+ def __getitem__(self, index):
94
+ image_id = self.files[index]
95
+ img = loadmat(join(self.root, "imgs", image_id))["img"]
96
+ img = to_pil_image(torch.from_numpy(img).permute(2, 0, 1)[:3]) # TODO add ir channel back
97
+ try:
98
+ label = loadmat(join(self.root, "gt", image_id))["gt"]
99
+ label = to_pil_image(torch.from_numpy(label).unsqueeze(-1).permute(2, 0, 1))
100
+ except FileNotFoundError:
101
+ label = to_pil_image(torch.ones(1, img.height, img.width))
102
+
103
+ seed = np.random.randint(2147483647)
104
+ random.seed(seed)
105
+ torch.manual_seed(seed)
106
+ img = self.transform(img)
107
+
108
+ random.seed(seed)
109
+ torch.manual_seed(seed)
110
+ label = self.target_transform(label).squeeze(0)
111
+ if self.coarse_labels:
112
+ new_label_map = torch.zeros_like(label)
113
+ for fine, coarse in self.fine_to_coarse.items():
114
+ new_label_map[label == fine] = coarse
115
+ label = new_label_map
116
+
117
+ mask = (label > 0).to(torch.float32)
118
+ return img, label, mask
119
+
120
+ def __len__(self):
121
+ return len(self.files)
datasets/precomputed.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from PIL import Image
3
+ from torch.utils.data import Dataset
4
+
5
+
6
+ class PrecomputedDataset(Dataset):
7
+ def __init__(self,
8
+ root,
9
+ transforms,
10
+ student_augs,
11
+ ):
12
+ super(PrecomputedDataset, self).__init__()
13
+ self.root = root
14
+ self.transforms = transforms
15
+ self.student_augs = student_augs
16
+
17
+ self.image_files = []
18
+ self.label_files = []
19
+ self.pseudo_files = []
20
+ for file in os.listdir(os.path.join(self.root, 'imgs')):
21
+ self.image_files.append(os.path.join(self.root, 'imgs', file))
22
+ self.label_files.append(os.path.join(self.root, 'gts', file))
23
+ self.pseudo_files.append(os.path.join(self.root, 'pseudos', file))
24
+
25
+
26
+ def __getitem__(self, index):
27
+ image_path = self.image_files[index]
28
+ label_path = self.label_files[index]
29
+ pseudo_path = self.pseudo_files[index]
30
+
31
+ img = Image.open(image_path).convert("RGB")
32
+ label = Image.open(label_path)
33
+ pseudo = Image.open(pseudo_path)
34
+
35
+ if self.student_augs:
36
+ img, label, aimg, pseudo = self.transforms(img, label, pseudo)
37
+ return img, label.long(), aimg, pseudo.long()
38
+ else:
39
+ img, label, pseudo = self.transforms(img, label, pseudo)
40
+ return img, label.long(), pseudo.long()
41
+
42
+ def __len__(self):
43
+ return len(self.image_files)