# # Authors: Wouter Van Gansbeke & Simon Vandenhende # Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/) import sys import os import numpy as np import pydensecrf.densecrf as dcrf import pydensecrf.utils as utils import torch import torch.nn.functional as F import torchvision.transforms.functional as VF sys.path.append(os.getcwd()) from modules.transforms import UnNormalize as unnorm MAX_ITER = 10 POS_W = 3 POS_XY_STD = 1 Bi_W = 4 Bi_XY_STD = 67 Bi_RGB_STD = 3 BGR_MEAN = np.array([104.008, 116.669, 122.675]) def dense_crf(image_tensor: torch.FloatTensor, output_logits: torch.FloatTensor): image = np.array(VF.to_pil_image(unnorm()(image_tensor)))[:, :, ::-1] H, W = image.shape[:2] image = np.ascontiguousarray(image) output_logits = F.interpolate(output_logits.unsqueeze(0), size=(H, W), mode="bilinear", align_corners=False).squeeze() output_probs = F.softmax(output_logits, dim=0).cpu().numpy() c = output_probs.shape[0] h = output_probs.shape[1] w = output_probs.shape[2] U = utils.unary_from_softmax(output_probs) U = np.ascontiguousarray(U) d = dcrf.DenseCRF2D(w, h, c) d.setUnaryEnergy(U) d.addPairwiseGaussian(sxy=POS_XY_STD, compat=POS_W) d.addPairwiseBilateral(sxy=Bi_XY_STD, srgb=Bi_RGB_STD, rgbim=image, compat=Bi_W) Q = d.inference(MAX_ITER) Q = np.array(Q).reshape((c, h, w)) return Q def _apply_crf(tup): return dense_crf(tup[0], tup[1]) def batched_crf(pool, img_tensor, prob_tensor): outputs = pool.map(_apply_crf, zip(img_tensor.detach().cpu(), prob_tensor.detach().cpu())) return torch.cat([torch.from_numpy(arr).unsqueeze(0) for arr in outputs], dim=0)