Spaces:
Runtime error
Runtime error
match percentage added
Browse files
utils.py
CHANGED
|
@@ -2,7 +2,8 @@ import sys
|
|
| 2 |
import subprocess
|
| 3 |
import streamlit as st
|
| 4 |
import numpy as np
|
| 5 |
-
|
|
|
|
| 6 |
import collections
|
| 7 |
import ktrain
|
| 8 |
import pandas as pd
|
|
@@ -11,8 +12,12 @@ import neattext.functions as nfx
|
|
| 11 |
|
| 12 |
|
| 13 |
label_path = ("./data/labels.txt")
|
|
|
|
|
|
|
| 14 |
cols = ['cat', 'code']
|
| 15 |
label_df = pd.read_csv(label_path, names=cols, header=0)
|
|
|
|
|
|
|
| 16 |
|
| 17 |
|
| 18 |
def default_text():
|
|
@@ -36,11 +41,11 @@ def load_skill_extractor():
|
|
| 36 |
|
| 37 |
from spacy.matcher import PhraseMatcher
|
| 38 |
# init params of skill extractor
|
| 39 |
-
print('load model')
|
| 40 |
|
| 41 |
nlp = spacy.load('en_core_web_lg')
|
| 42 |
|
| 43 |
-
print('load matcher')
|
| 44 |
# init skill extractor
|
| 45 |
skill_extractor = SkillExtractor(nlp, SKILL_DB, PhraseMatcher,)
|
| 46 |
return skill_extractor
|
|
@@ -63,10 +68,14 @@ def clean_text(text):
|
|
| 63 |
|
| 64 |
|
| 65 |
def predict_cat(model, text):
|
|
|
|
|
|
|
| 66 |
|
| 67 |
logits = model.predict(text,return_proba=True)
|
| 68 |
prob = int(logits.max()*100)
|
| 69 |
cat= label_df.iloc[logits.argmax()].values[0]
|
|
|
|
|
|
|
| 70 |
return prob,cat
|
| 71 |
|
| 72 |
|
|
@@ -84,27 +93,15 @@ def grouper(iterable):
|
|
| 84 |
yield group
|
| 85 |
|
| 86 |
|
| 87 |
-
def
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
skill_type = skill_extractor.skills_db[skill_id]['skill_type']
|
| 97 |
-
if skill_type == 'Soft Skill' and item['doc_node_value']:
|
| 98 |
-
soft_skill.append(item['doc_node_value'])
|
| 99 |
-
if skill_type == 'Hard Skill':
|
| 100 |
-
hard_skill.append(item['doc_node_value'])
|
| 101 |
-
# skill_dict['Soft Skill'] =set(soft_skill)
|
| 102 |
-
sk = " ".join(list(set(soft_skill)))
|
| 103 |
-
hk = " ".join(list(set(hard_skill)))
|
| 104 |
-
# st.write(skill_extractor.describe(annotations))
|
| 105 |
-
return sk+hk
|
| 106 |
-
except Exception as e:
|
| 107 |
-
return None
|
| 108 |
|
| 109 |
|
| 110 |
def install(package):
|
|
@@ -112,46 +109,6 @@ def install(package):
|
|
| 112 |
|
| 113 |
|
| 114 |
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
def create_ann_list(text, results):
|
| 118 |
-
try:
|
| 119 |
-
from skillNer.general_params import SKILL_DB
|
| 120 |
-
except:
|
| 121 |
-
# install skillner if not done yet
|
| 122 |
-
os.system('pip install skillner')
|
| 123 |
-
from skillNer.general_params import SKILL_DB
|
| 124 |
-
|
| 125 |
-
type_to_color = {'Hard Skill': "#faa",
|
| 126 |
-
'Soft Skill': '#afa', 'Certification': '#ff4'}
|
| 127 |
-
text_tokens = text.split(' ')
|
| 128 |
-
annots = {}
|
| 129 |
-
all_res = results['ngram_scored']+results['full_matches']
|
| 130 |
-
ids_done = []
|
| 131 |
-
# create annotations from matches
|
| 132 |
-
for match in all_res:
|
| 133 |
-
id_ = match['skill_id']
|
| 134 |
-
type_ = SKILL_DB[id_]['skill_type']
|
| 135 |
-
span_str = ' '.join([text_tokens[i] for i in match['doc_node_id']])
|
| 136 |
-
annot = annotation(span_str, type_, background=type_to_color[type_],
|
| 137 |
-
color="#333", margin='2px')
|
| 138 |
-
annots[match['doc_node_id'][0]] = annot
|
| 139 |
-
for i in match['doc_node_id']:
|
| 140 |
-
ids_done.append(i)
|
| 141 |
-
# create strs for non annotated text
|
| 142 |
-
non_match_ids = [i for i, _ in enumerate(text_tokens) if i not in ids_done]
|
| 143 |
-
dict_ = dict(enumerate(grouper(non_match_ids), 1))
|
| 144 |
-
for v in dict_.values():
|
| 145 |
-
span = ' '.join([text_tokens[i] for i in v])
|
| 146 |
-
annots[v[0]] = span
|
| 147 |
-
# annotation(token,color="#fff", background="transparent",)
|
| 148 |
-
print(dict_)
|
| 149 |
-
print('-----')
|
| 150 |
-
# print(collections.OrderedDict(sorted(annots.items())))
|
| 151 |
-
annots_ = collections.OrderedDict(sorted(annots.items())).values()
|
| 152 |
-
return annots_
|
| 153 |
-
|
| 154 |
-
|
| 155 |
def create_dfs(results):
|
| 156 |
try:
|
| 157 |
from skillNer.general_params import SKILL_DB
|
|
@@ -161,12 +118,13 @@ def create_dfs(results):
|
|
| 161 |
from skillNer.general_params import SKILL_DB
|
| 162 |
|
| 163 |
f_matches = results['full_matches']
|
| 164 |
-
|
| 165 |
for match in f_matches:
|
| 166 |
id_ = match['skill_id']
|
| 167 |
full_name = SKILL_DB[id_]['skill_name']
|
| 168 |
type_ = SKILL_DB[id_]['skill_type']
|
| 169 |
-
|
|
|
|
| 170 |
s_matches = results['ngram_scored']
|
| 171 |
s_arr = []
|
| 172 |
for match in s_matches:
|
|
@@ -174,9 +132,11 @@ def create_dfs(results):
|
|
| 174 |
full_name = SKILL_DB[id_]['skill_name']
|
| 175 |
type_ = SKILL_DB[id_]['skill_type']
|
| 176 |
score = match['score']
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
|
|
|
|
|
|
|
|
| 2 |
import subprocess
|
| 3 |
import streamlit as st
|
| 4 |
import numpy as np
|
| 5 |
+
import ast
|
| 6 |
+
# from annotated_text import annotation
|
| 7 |
import collections
|
| 8 |
import ktrain
|
| 9 |
import pandas as pd
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
label_path = ("./data/labels.txt")
|
| 15 |
+
top_skills= ("./data/top_50_hard_skills.csv")
|
| 16 |
+
|
| 17 |
cols = ['cat', 'code']
|
| 18 |
label_df = pd.read_csv(label_path, names=cols, header=0)
|
| 19 |
+
skcols = ['cat','skills']
|
| 20 |
+
top_skill_df = pd.read_csv(top_skills, names=skcols, header=0)
|
| 21 |
|
| 22 |
|
| 23 |
def default_text():
|
|
|
|
| 41 |
|
| 42 |
from spacy.matcher import PhraseMatcher
|
| 43 |
# init params of skill extractor
|
| 44 |
+
# print('load model')
|
| 45 |
|
| 46 |
nlp = spacy.load('en_core_web_lg')
|
| 47 |
|
| 48 |
+
# print('load matcher')
|
| 49 |
# init skill extractor
|
| 50 |
skill_extractor = SkillExtractor(nlp, SKILL_DB, PhraseMatcher,)
|
| 51 |
return skill_extractor
|
|
|
|
| 68 |
|
| 69 |
|
| 70 |
def predict_cat(model, text):
|
| 71 |
+
# p = int(model.predict(text,return_proba=True).max()*100)
|
| 72 |
+
# cat = model.predict(text)
|
| 73 |
|
| 74 |
logits = model.predict(text,return_proba=True)
|
| 75 |
prob = int(logits.max()*100)
|
| 76 |
cat= label_df.iloc[logits.argmax()].values[0]
|
| 77 |
+
|
| 78 |
+
|
| 79 |
return prob,cat
|
| 80 |
|
| 81 |
|
|
|
|
| 93 |
yield group
|
| 94 |
|
| 95 |
|
| 96 |
+
def get_match(job_cat,cv_skills):
|
| 97 |
+
skills = top_skill_df[top_skill_df['cat'] == job_cat]['skills']
|
| 98 |
+
top_skills = set(ast.literal_eval(",".join(skills)))
|
| 99 |
+
cv_skills = set(cv_skills)
|
| 100 |
+
matched_skills = top_skills.intersection(cv_skills)
|
| 101 |
+
m = len(matched_skills)
|
| 102 |
+
d = len(top_skills)
|
| 103 |
+
match_p = round((m/10*100), 2)
|
| 104 |
+
return match_p
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
|
| 106 |
|
| 107 |
def install(package):
|
|
|
|
| 109 |
|
| 110 |
|
| 111 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
def create_dfs(results):
|
| 113 |
try:
|
| 114 |
from skillNer.general_params import SKILL_DB
|
|
|
|
| 118 |
from skillNer.general_params import SKILL_DB
|
| 119 |
|
| 120 |
f_matches = results['full_matches']
|
| 121 |
+
hard_skills =[]
|
| 122 |
for match in f_matches:
|
| 123 |
id_ = match['skill_id']
|
| 124 |
full_name = SKILL_DB[id_]['skill_name']
|
| 125 |
type_ = SKILL_DB[id_]['skill_type']
|
| 126 |
+
if type_ == 'Hard Skill':
|
| 127 |
+
hard_skills.append(full_name)
|
| 128 |
s_matches = results['ngram_scored']
|
| 129 |
s_arr = []
|
| 130 |
for match in s_matches:
|
|
|
|
| 132 |
full_name = SKILL_DB[id_]['skill_name']
|
| 133 |
type_ = SKILL_DB[id_]['skill_type']
|
| 134 |
score = match['score']
|
| 135 |
+
if type_ == 'Hard Skill':
|
| 136 |
+
hard_skills.append(full_name)
|
| 137 |
+
hard_skills =list(set(hard_skills))
|
| 138 |
+
# df = pd.DataFrame(
|
| 139 |
+
# # f_arr, columns=['skill id', 'skill name', 'skill type'])
|
| 140 |
+
# hard_skills, columns=['skill name'])
|
| 141 |
+
|
| 142 |
+
return hard_skills
|