Spaces:
Starting
Starting
File size: 26,677 Bytes
488dc3e 1bbca12 4701375 751d628 488dc3e 4701375 488dc3e 4701375 751d628 4701375 1bbca12 4701375 c6951f4 f95c630 751d628 488dc3e 4701375 488dc3e 1bbca12 4701375 751d628 c6951f4 751d628 1bbca12 488dc3e 4701375 c6951f4 4701375 c6951f4 751d628 4701375 1bbca12 c6951f4 f95c630 c6951f4 f95c630 c6951f4 751d628 c6951f4 f95c630 c6951f4 751d628 c6951f4 f95c630 c6951f4 751d628 c6951f4 751d628 488dc3e c6951f4 751d628 488dc3e 751d628 488dc3e 4701375 488dc3e 751d628 c6951f4 751d628 488dc3e 751d628 4701375 751d628 c6951f4 4701375 751d628 4701375 751d628 4701375 751d628 c6951f4 751d628 c6951f4 751d628 c6951f4 751d628 488dc3e 751d628 c6951f4 4701375 488dc3e c6951f4 488dc3e 751d628 488dc3e 751d628 4701375 751d628 c6951f4 751d628 c6951f4 751d628 488dc3e 751d628 488dc3e c6951f4 488dc3e 751d628 488dc3e 751d628 4701375 488dc3e c6951f4 488dc3e 751d628 c6951f4 488dc3e 751d628 488dc3e 4701375 751d628 4701375 488dc3e 751d628 488dc3e 751d628 c6951f4 4701375 c6951f4 4701375 488dc3e c6951f4 751d628 488dc3e 751d628 c6951f4 488dc3e 751d628 c6951f4 751d628 c6951f4 751d628 c6951f4 751d628 c6951f4 751d628 488dc3e c6951f4 751d628 488dc3e 751d628 488dc3e c6951f4 488dc3e 751d628 488dc3e 4701375 488dc3e c6951f4 488dc3e c6951f4 f95c630 488dc3e c6951f4 488dc3e c6951f4 488dc3e c6951f4 1bbca12 488dc3e 4701375 488dc3e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 |
import os
import json
import logging
import asyncio
import aiohttp
import ssl
import nest_asyncio
import requests
import pandas as pd
from typing import Dict, Any, List
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.messages import SystemMessage, HumanMessage
from langgraph.graph import StateGraph, END
import torch
from sentence_transformers import SentenceTransformer
import gradio as gr
from dotenv import load_dotenv
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM
import together
from state import JARVISState, validate_state, reset_state
from tools.answer_generator import generate_answer, preprocess_question
from tools.file_fetcher import fetch_task_file
from tools.search import search_tool, multi_hop_search_tool
from tools.file_parser import file_parser_tool
from tools.image_parser import image_parser_tool
from tools.calculator import calculator_tool
from tools.document_retriever import document_retriever_tool
from tools.duckduckgo_search import duckduckgo_search_tool
from tools.weather_info import weather_info_tool
from tools.hub_stats import hub_stats_tool
from tools.guest_info import guest_info_retriever_tool
# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
# Apply nest_asyncio
nest_asyncio.apply()
# Load environment variables
load_dotenv()
SPACE_ID = os.getenv("SPACE_ID", "onisj/jarvis_gaia_agent")
GAIA_API_URL = "https://agents-course-unit4-api-1.hf.space/api"
TOGETHER_API_KEY = os.getenv("TOGETHER_API_KEY")
HF_API_TOKEN = os.getenv("HUGGINGFACEHUB_API_TOKEN")
OPENWEATHERMAP_API_KEY = os.getenv("OPENWEATHERMAP_API_KEY")
# Verify environment variables
if not SPACE_ID:
raise ValueError("SPACE_ID not set")
if not HF_API_TOKEN:
raise ValueError("HUGGINGFACEHUB_API_TOKEN not set")
if not TOGETHER_API_KEY:
raise ValueError("TOGETHER_API_KEY not set")
if not OPENWEATHERMAP_API_KEY:
logger.warning("OPENWEATHERMAP_API_KEY not set; weather_info_tool may fail")
logger.info(f"SPACE_ID: {SPACE_ID}")
# Model configuration
TOGETHER_MODELS = [
"meta-llama/Llama-3.3-70B-Instruct-Turbo-Free",
"deepseek-ai/DeepSeek-R1-Distill-Llama-70B-free",
]
HF_MODEL = "meta-llama/Llama-3.2-1B-Instruct"
# Initialize LLM clients
def initialize_llm():
for model in TOGETHER_MODELS:
try:
together.api_key = TOGETHER_API_KEY
client = together.Together()
response = client.chat.completions.create(
model=model,
messages=[{"role": "user", "content": "Test"}],
max_tokens=10
)
logger.info(f"Initialized Together AI model: {model}")
return client, "together", model
except Exception as e:
logger.warning(f"Failed to initialize Together AI model {model}: {e}")
try:
client = InferenceClient(
model=HF_MODEL,
token=HF_API_TOKEN,
timeout=30
)
logger.info(f"Initialized Hugging Face Inference API model: {HF_MODEL}")
return client, "hf_api", HF_MODEL
except Exception as e:
logger.warning(f"Failed to initialize HF Inference API: {e}")
try:
tokenizer = AutoTokenizer.from_pretrained(HF_MODEL, token=HF_API_TOKEN)
model = AutoModelForCausalLM.from_pretrained(HF_MODEL, token=HF_API_TOKEN, device_map="auto")
logger.info(f"Initialized local Hugging Face model: {HF_MODEL}")
return (model, tokenizer), "hf_local", HF_MODEL
except Exception as e:
logger.error(f"Failed to initialize local HF model: {e}")
raise Exception("No LLM could be initialized")
llm_client, llm_type, llm_model = initialize_llm()
# Initialize embedder
_embedder = None
def get_embedder():
global _embedder
if _embedder is None:
try:
device = "cuda" if torch.cuda.is_available() else "cpu"
_embedder = SentenceTransformer(
"all-MiniLM-L6-v2",
device=device,
cache_folder="./cache"
)
logger.info(f"SentenceTransformer initialized on {device.upper()}")
except Exception as e:
logger.error(f"Failed to initialize SentenceTransformer: {e}")
raise RuntimeError(f"Embedder initialization failed: {e}")
return _embedder
try:
embedder = get_embedder()
except Exception as e:
logger.error(f"Failed to initialize embedder: {e}")
embedder = None
# Log device
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device: {device}")
# HTTP session with SSL handling
async def create_http_session():
ssl_context = ssl.create_default_context()
ssl_context.check_hostname = False
ssl_context.verify_mode = ssl.CERT_NONE
return aiohttp.ClientSession(
connector=aiohttp.TCPConnector(ssl=ssl_context),
timeout=aiohttp.ClientTimeout(total=30)
)
# Tool registration
tools = {
"search_tool": search_tool,
"multi_hop_search_tool": multi_hop_search_tool,
"file_parser_tool": file_parser_tool,
"image_parser_tool": image_parser_tool,
"calculator_tool": calculator_tool,
"document_retriever_tool": document_retriever_tool,
"duckduckgo_search_tool": duckduckgo_search_tool,
"weather_info_tool": weather_info_tool,
"hub_stats_tool": hub_stats_tool,
"guest_info_retriever_tool": guest_info_retriever_tool,
}
# Parse question to select tools
async def parse_question(state: JARVISState) -> JARVISState:
"""
Parse the question to select appropriate tools using LLM with retries, preprocess the question, and integrate file-based tools.
Args:
state (JARVISState): The input state containing task_id, question.
Returns:
JARVISState: Updated state with selected tools_needed and metadata.
"""
state = validate_state(state)
task_id = state["task_id"]
question = state["question"]
logger.info(f"Task {task_id} Parsing question: {question}")
try:
# Preprocess question
processed_question = await preprocess_question(question)
if processed_question != question:
logger.info(f"Task {task_id} Preprocessed question: {processed_question}")
state["question"] = processed_question
question = processed_question
# Default to search_tool
tools_needed = ["search_tool"]
# LLM-based tool selection
if llm_client:
prompt = ChatPromptTemplate.from_messages([
SystemMessage(content="""Select tools from: ['search_tool', 'multi_hop_search_tool', 'file_parser_tool', 'image_parser_tool', 'calculator_tool', 'document_retriever_tool', 'duckduckgo_search_tool', 'weather_info_tool', 'hub_stats_tool', 'guest_info_retriever_tool'].
Return a JSON list of all relevant tools, e.g., ["search_tool", "duckduckgo_search_tool"].
Rules:
- Include "search_tool" for web-based questions unless purely computational or file-based.
- Include "multi_hop_search_tool" for questions with >20 words or requiring multiple steps.
- Include "file_parser_tool" for 'data', 'table', 'excel', 'csv', 'txt', 'mp3', or file extensions.
- Include "image_parser_tool" for 'image', 'video', 'picture', or 'painting'.
- Include "calculator_tool" for 'calculate', 'math', 'sum', 'average', 'total', or numerical operations.
- Include "document_retriever_tool" for 'document', 'pdf', 'report', or 'paper'.
- Include "duckduckgo_search_tool" for 'search', 'wikipedia', 'online', or general knowledge.
- Include "weather_info_tool" for 'weather', 'temperature', or 'forecast'.
- Include "hub_stats_tool" for 'model', 'huggingface', or 'dataset'.
- Include "guest_info_retriever_tool" for 'guest', 'name', 'relation', or 'person'.
- Select multiple tools if the question spans multiple domains (e.g., web and file).
- Output ONLY valid JSON."""),
HumanMessage(content=f"Query: {question}")
])
messages = prompt.format_messages()
for attempt in range(3): # Retry up to 3 times
try:
formatted_messages = [
{"role": "system" if isinstance(m, SystemMessage) else "user", "content": m.content}
for m in messages
]
if llm_type == "hf_local":
model, tokenizer = llm_client
inputs = tokenizer.apply_chat_template(
formatted_messages,
return_tensors="pt"
).to(model.device)
outputs = model.generate(inputs, max_new_tokens=100, temperature=0.5)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
elif llm_type == "together":
response = llm_client.chat.completions.create(
model=llm_model,
messages=formatted_messages,
max_tokens=100,
temperature=0.5
)
response = response.choices[0].message.content.strip()
else: # hf_api
response = llm_client.chat.completions.create(
messages=formatted_messages,
max_tokens=100,
temperature=0.5
)
response = response.choices[0].message.content.strip()
logger.info(f"Task {task_id} LLM tool selection response: {response}")
try:
tools_needed = json.loads(response)
if isinstance(tools_needed, list) and all(isinstance(t, str) and t in tools for t in tools_needed):
break # Valid response, exit retry loop
else:
raise ValueError("Invalid tool list format")
except json.JSONDecodeError as e:
logger.warning(f"Task {task_id}: Invalid JSON (attempt {attempt + 1}): {e}")
if attempt == 2:
tools_needed = ["search_tool"] # Fallback after retries
except Exception as e:
logger.warning(f"Task {task_id} Tool selection failed (attempt {attempt + 1}): {e}")
if attempt == 2:
tools_needed = ["search_tool"] # Fallback after retries
# Fallback to keyword-based selection if LLM fails
if tools_needed == ["search_tool"] and not any(kw in question.lower() for kw in ["calculate", "math", "image", "document", "file", "weather", "guest", "model"]):
question_lower = question.lower()
if any(kw in question_lower for kw in ["excel", "csv", "mp3", "data", "table", "xlsx"]):
tools_needed.append("file_parser_tool")
if any(kw in question_lower for kw in ["image", "video", "picture", "painting"]):
tools_needed.append("image_parser_tool")
if any(kw in question_lower for kw in ["calculate", "math", "sum", "average", "total"]):
tools_needed.append("calculator_tool")
if any(kw in question_lower for kw in ["document", "pdf", "report", "paper"]):
tools_needed.append("document_retriever_tool")
if any(kw in question_lower for kw in ["search", "wikipedia", "online"]):
tools_needed.append("duckduckgo_search_tool")
if any(kw in question_lower for kw in ["weather", "temperature", "forecast"]):
tools_needed.append("weather_info_tool")
if any(kw in question_lower for kw in ["model", "huggingface", "dataset"]):
tools_needed.append("hub_stats_tool")
if any(kw in question_lower for kw in ["guest", "name", "relation", "person"]):
tools_needed.append("guest_info_retriever_tool")
if len(question.split()) > 20 or "multiple" in question_lower:
tools_needed.append("multi_hop_search_tool")
# Integrate file-based tools
file_results = await fetch_task_file(task_id, question)
for ext, content in file_results.items():
if content:
os.makedirs("temp", exist_ok=True)
file_path = f"temp/{task_id}.{ext}"
with open(file_path, "wb") as f:
f.write(content)
state["metadata"] = state.get("metadata", {}) | {"file_ext": ext, "file_path": file_path}
if ext in ["txt", "csv", "xlsx", "mp3"] and "file_parser_tool" not in tools_needed:
tools_needed.append("file_parser_tool")
elif ext in ["jpg", "png"] and "image_parser_tool" not in tools_needed:
tools_needed.append("image_parser_tool")
elif ext == "pdf" and "document_retriever_tool" not in tools_needed:
tools_needed.append("document_retriever_tool")
state["tools_needed"] = list(set(tools_needed)) # Remove duplicates
logger.info(f"Task {task_id} Selected tools: {state['tools_needed']}")
return state
except Exception as e:
logger.error(f"Task {task_id} Tool selection failed: {e}")
state["error"] = f"Parse question failed: {str(e)}"
state["tools_needed"] = ["search_tool"]
return state
# Tool dispatcher
async def tool_dispatcher(state: JARVISState) -> JARVISState:
state = validate_state(state)
try:
task_id = state["task_id"]
question = state["question"]
tools_needed = state["tools_needed"]
for tool_name in tools_needed:
try:
if tool_name == "search_tool":
result = await tools["search_tool"].ainvoke({"query": question})
state["web_results"].extend([str(r) for r in result] if result else ["No results from search_tool"])
elif tool_name == "multi_hop_search_tool":
result = await tools["multi_hop_search_tool"].ainvoke({
"query": question,
"steps": 3,
"llm_client": llm_client,
"llm_type": llm_type,
"llm_model": llm_model
})
state["multi_hop_results"].extend([r["content"] if isinstance(r, dict) else str(r) for r in result] if result else ["No results from multi_hop_search_tool"])
elif tool_name == "file_parser_tool":
file_path = state["metadata"].get("file_path")
file_ext = state["metadata"].get("file_ext")
if file_path and os.path.exists(file_path) and file_ext:
result = await tools["file_parser_tool"].ainvoke({
"task_id": task_id,
"file_type": file_ext,
"file_path": file_path,
"query": question
})
state["file_results"] = str(result) if result else "No file results"
else:
state["file_results"] = "No file available"
elif tool_name == "image_parser_tool":
file_path = state["metadata"].get("file_path")
if file_path and os.path.exists(file_path) and file_path.split('.')[-1] in ["jpg", "png"]:
result = await tools["image_parser_tool"].ainvoke({"task_id": task_id, "file_path": file_path})
state["image_results"] = str(result) if result else "No image results"
else:
state["image_results"] = "No image available"
elif tool_name == "calculator_tool":
result = await tools["calculator_tool"].ainvoke({"expression": question})
state["calculation_results"] = str(result) if result else "No calculation results"
elif tool_name == "document_retriever_tool":
file_path = state["metadata"].get("file_path")
if file_path and os.path.exists(file_path) and file_path.split('.')[-1] == "pdf":
result = await tools["document_retriever_tool"].ainvoke({
"task_id": task_id,
"query": question,
"file_path": file_path
})
state["document_results"] = str(result) if result else "No document results"
else:
state["document_results"] = "No document available"
elif tool_name == "duckduckgo_search_tool":
result = await tools["duckduckgo_search_tool"].ainvoke({
"query": question,
"original_query": question,
"embedder": embedder
})
state["web_results"].extend(result if isinstance(result, list) else [str(result)] if result else ["No results from duckduckgo_search_tool"])
elif tool_name == "weather_info_tool":
location = question.split()[-1] if "weather" in question.lower() else "Unknown"
result = await tools["weather_info_tool"].ainvoke({"location": location})
state["web_results"].append(str(result) if result else "No weather results")
elif tool_name == "hub_stats_tool":
author = question.split("by ")[1].split()[0] if "by" in question.lower() else "Unknown"
result = await tools["hub_stats_tool"].ainvoke({"author": author})
state["web_results"].append(str(result) if result else "No hub stats results")
elif tool_name == "guest_info_retriever_tool":
result = await tools["guest_info_retriever_tool"].ainvoke({"query": question})
state["web_results"].append(str(result) if result else "No guest info results")
state["metadata"] = state.get("metadata", {}) | {f"{tool_name}_executed": True}
logger.info(f"Task {task_id}: Executed {tool_name}")
except Exception as e:
logger.warning(f"Tool {tool_name} failed for task {task_id}: {e}")
state["metadata"] = state.get("metadata", {}) | {f"{tool_name}_error": str(e)}
# Ensure results are populated
state["web_results"] = state.get("web_results", ["No web results found"])
state["file_results"] = state.get("file_results", "No file results found")
state["image_results"] = state.get("image_results", "No image results found")
state["document_results"] = state.get("document_results", "No document results found")
state["calculation_results"] = state.get("calculation_results", "No calculation results found")
state["answer"] = await generate_answer(
task_id=task_id,
question=question,
search_results=state.get("web_results", []) + [
r["content"] if isinstance(r, dict) else str(r) for r in state.get("multi_hop_results", [])
],
file_results=state.get("file_results", "") + state.get("document_results", "") + state.get("image_results", "") + state.get("calculation_results", ""),
llm_client=llm_client
)
logger.info(f"Task {task_id}: Generated answer: {state['answer']}")
return state
except Exception as e:
logger.error(f"Tool dispatch failed: {e}")
state["error"] = f"Tool dispatch failed: {e}"
return state
# Define StateGraph
workflow = StateGraph(JARVISState)
workflow.add_node("parse_question", parse_question)
workflow.add_node("tool_dispatcher", tool_dispatcher)
workflow.set_entry_point("parse_question")
workflow.add_edge("parse_question", "tool_dispatcher")
workflow.add_edge("tool_dispatcher", END)
graph = workflow.compile()
# Agent class
class JARVISAgent:
def __init__(self):
self.state = reset_state(task_id="init", question="Agent initialized")
self.state["results_table"] = [] # Initialize as empty list
logger.info("JARVISAgent initialized.")
async def process_question(self, task_id: str, question: str) -> str:
state = reset_state(task_id=task_id, question=question)
try:
result = await graph.ainvoke(state)
answer = result.get("answer", "Unknown")
logger.info(f"Task {task_id} Final answer: {answer}")
self.state["results_table"].append({"Task ID": task_id, "Question": question, "Answer": answer})
self.state["metadata"] = {"last_task_id": task_id, "answer": answer}
return answer
except Exception as e:
logger.error(f"Error processing task {task_id}: {e}")
self.state["results_table"].append({"Task ID": task_id, "Question": question, "Answer": f"Error: {e}"})
self.state["error"] = f"Task {task_id} failed: {str(e)}"
return f"Error: {str(e)}"
finally:
for ext in ["txt", "csv", "xlsx", "mp3", "jpg", "png", "pdf"]:
file_path = f"temp/{task_id}.{ext}"
if os.path.exists(file_path):
try:
os.remove(file_path)
logger.info(f"Removed temp file: {file_path}")
except Exception as e:
logger.error(f"Error removing file {file_path}: {e}")
async def process_all_questions(self, profile: gr.OAuthProfile | None):
if not profile:
logger.error("User not logged in.")
self.state["status_output"] = "Please Login to Hugging Face."
return pd.DataFrame(self.state["results_table"]), self.state["status_output"]
username = profile.username
logger.info(f"User logged in: {username}")
questions_url = f"{GAIA_API_URL}/questions"
submit_url = f"{GAIA_API_URL}/submit"
agent_code = f"https://huggingface.co/spaces/{SPACE_ID}/tree/main"
try:
async with await create_http_session() as session:
async with session.get(questions_url) as response:
response.raise_for_status()
questions = await response.json()
logger.info(f"Fetched {len(questions)} questions.")
except Exception as e:
logger.error(f"Error fetching questions: {e}")
self.state["status_output"] = f"Error fetching questions: {e}"
self.state["error"] = f"Fetch questions failed: {str(e)}"
return pd.DataFrame(self.state["results_table"]), self.state["status_output"]
answers_payload = []
for item in questions:
task_id = item.get("task_id")
question = item.get("question")
if not task_id or not question:
logger.warning(f"Skipping invalid item: {item}")
continue
answer = await self.process_question(task_id, question)
answers_payload.append({"task_id": task_id, "submitted_answer": answer})
if not answers_payload:
logger.error("No answers generated.")
self.state["status_output"] = "No answers to submit."
self.state["error"] = "No answers generated"
return pd.DataFrame(self.state["results_table"]), self.state["status_output"]
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
try:
async with await create_http_session() as session:
async with session.post(submit_url, json=submission_data) as response:
response.raise_for_status()
result_data = await response.json()
self.state["status_output"] = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
self.state["metadata"] = self.state.get("metadata", {}) | {"submission_score": result_data.get('score', 'N/A')}
except Exception as e:
logger.error(f"Submission failed: {e}")
self.state["status_output"] = f"Submission Failed: {e}"
self.state["error"] = f"Submission failed: {str(e)}"
return pd.DataFrame(self.state["results_table"] if self.state["results_table"] else [], columns=["Task ID", "Question", "Answer"]), self.state["status_output"]
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# JARVIS GAIA Agent")
gr.Markdown(
"""
**Instructions:**
1. Log in to Hugging Face using the button below.
2. Click 'Run Evaluation & Submit All Answers' to process GAIA questions and submit.
---
**Disclaimers:**
Uses Hugging Face Inference, Together AI, SERPAPI, and OpenWeatherMap for GAIA benchmark.
"""
)
with gr.Row():
gr.LoginButton(value="Login to Hugging Face")
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Answers", wrap=True, headers=["Task ID", "Question", "Answer"])
agent = JARVISAgent()
run_button.click(
fn=agent.process_all_questions,
outputs=[results_table, status_output]
)
if __name__ == "__main__":
logger.info("\n" + "-"*30 + " App Starting " + "-"*30)
logger.info(f"SPACE_ID: {SPACE_ID}")
logger.info("Launching Gradio Interface...")
demo.launch(debug=True, share=False) |