open_llm_leaderboard / src /populate.py
alozowski
fix round columns
fb35a84
raw
history blame
2.2 kB
import pathlib
import pandas as pd
from datasets import Dataset
from src.display.formatting import has_no_nan_values, make_clickable_model
from src.display.utils import AutoEvalColumn, EvalQueueColumn
from src.leaderboard.filter_models import filter_models_flags
from src.display.utils import load_json_data
def _process_model_data(entry, model_name_key="model", revision_key="revision"):
"""Enrich model data with clickable links and revisions."""
entry[EvalQueueColumn.model_name.name] = entry.get(model_name_key, "")
entry[EvalQueueColumn.model_link.name] = make_clickable_model(entry.get(model_name_key, ""))
entry[EvalQueueColumn.revision.name] = entry.get(revision_key, "main")
return entry
def get_evaluation_queue_df(save_path, cols):
"""Generate dataframes for pending, running, and finished evaluation entries."""
save_path = pathlib.Path(save_path)
all_evals = []
for path in save_path.rglob("*.json"):
data = load_json_data(path)
if data:
all_evals.append(_process_model_data(data))
# Organizing data by status
status_map = {
"PENDING": ["PENDING", "RERUN"],
"RUNNING": ["RUNNING"],
"FINISHED": ["FINISHED", "PENDING_NEW_EVAL"],
}
status_dfs = {status: [] for status in status_map}
for eval_data in all_evals:
for status, extra_statuses in status_map.items():
if eval_data["status"] in extra_statuses:
status_dfs[status].append(eval_data)
return tuple(pd.DataFrame(status_dfs[status], columns=cols) for status in ["FINISHED", "RUNNING", "PENDING"])
def get_leaderboard_df(leaderboard_dataset: Dataset, cols: list, benchmark_cols: list):
"""Retrieve and process leaderboard data."""
all_data_json = leaderboard_dataset.to_dict()
num_items = leaderboard_dataset.num_rows
all_data_json_list = [{k: all_data_json[k][ix] for k in all_data_json.keys()} for ix in range(num_items)]
filter_models_flags(all_data_json_list)
df = pd.DataFrame.from_records(all_data_json_list)
df = df.sort_values(by=[AutoEvalColumn.average.name], ascending=False)
df = df[has_no_nan_values(df, benchmark_cols)]
return df