File size: 22,655 Bytes
4a2e1bf
 
 
 
 
 
 
 
 
 
8129390
4a2e1bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8129390
 
 
 
 
 
 
 
 
 
 
95bd5ef
 
 
 
 
 
 
 
8129390
 
95bd5ef
 
 
 
8129390
 
 
95bd5ef
 
 
 
 
 
 
 
 
 
8129390
 
2d0696f
4a2e1bf
 
 
 
 
 
 
 
 
 
2d0696f
4a2e1bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d0696f
4a2e1bf
2d0696f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a2e1bf
 
 
2d0696f
 
 
 
 
4a2e1bf
 
 
 
 
 
 
2d0696f
 
 
 
4a2e1bf
8129390
 
 
 
95bd5ef
 
8129390
95bd5ef
8129390
 
95bd5ef
 
8129390
 
 
 
95bd5ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8129390
95bd5ef
8129390
95bd5ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8129390
 
 
 
 
 
 
 
95bd5ef
 
 
 
 
 
 
 
 
 
 
 
8129390
adf35bc
8129390
 
 
95bd5ef
 
 
 
 
8129390
 
adf35bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95bd5ef
adf35bc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8129390
 
 
 
 
 
 
 
 
 
95bd5ef
8129390
 
 
 
 
 
 
95bd5ef
 
 
 
 
 
 
 
 
 
 
 
8129390
4a2e1bf
 
2d0696f
 
4a2e1bf
 
 
2d0696f
4a2e1bf
2d0696f
 
 
4a2e1bf
2d0696f
 
 
 
 
4a2e1bf
 
 
 
 
 
8129390
 
 
 
 
 
 
 
4a2e1bf
 
 
 
 
 
 
 
 
 
2d0696f
 
 
 
 
4a2e1bf
 
 
 
 
 
 
 
 
 
 
 
 
2d0696f
4a2e1bf
 
 
2d0696f
4a2e1bf
 
 
2d0696f
4a2e1bf
 
 
 
 
 
 
2d0696f
4a2e1bf
 
 
 
 
 
 
 
 
 
 
2d0696f
 
4a2e1bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d0696f
 
 
4a2e1bf
2d0696f
4a2e1bf
917cf8a
 
 
 
 
4a2e1bf
917cf8a
 
 
 
 
 
 
 
 
 
 
b6d676c
 
917cf8a
b6d676c
917cf8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a2e1bf
917cf8a
b6d676c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import logging
import gradio as gr
import pandas as pd
import torch
import numpy as np
import matplotlib.pyplot as plt
from GoogleNews import GoogleNews
from transformers import pipeline
from datetime import datetime, timedelta
import matplotlib
import yfinance as yf
matplotlib.use('Agg')

# Set up logging
logging.basicConfig(
    level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)

SENTIMENT_ANALYSIS_MODEL = (
    "mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
)
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
logging.info(f"Using device: {DEVICE}")
logging.info("Initializing sentiment analysis model...")
sentiment_analyzer = pipeline(
    "sentiment-analysis", model=SENTIMENT_ANALYSIS_MODEL, device=DEVICE
)
logging.info("Model initialized successfully")

# ์ƒ์žฅ ์ข…๋ชฉ ์‹ฌ๋ณผ ๋งคํ•‘์„ ์œ„ํ•œ ์ผ๋ฐ˜์ ์ธ ์ข…๋ชฉ๋ช… ์‚ฌ์ „ (ํ•„์š”์— ๋”ฐ๋ผ ํ™•์žฅ)
COMMON_TICKERS = {
    "apple": "AAPL",
    "microsoft": "MSFT",
    "amazon": "AMZN",
    "google": "GOOGL",
    "alphabet": "GOOGL",
    "facebook": "META",
    "meta": "META",
    "tesla": "TSLA",
    "nvidia": "NVDA",
    "netflix": "NFLX",
    "amd": "AMD",
    "intel": "INTC",
    "ibm": "IBM",
    "oracle": "ORCL",
    "paypal": "PYPL",
    "adobe": "ADBE",
    "cisco": "CSCO",
    "bitcoin": "BTC-USD",
    "ethereum": "ETH-USD",
    "dogecoin": "DOGE-USD",
    "cardano": "ADA-USD",
    "xrp": "XRP-USD",
    "litecoin": "LTC-USD",
    "samsung": "005930.KS",  # ํ•œ๊ตญ ์‚ผ์„ฑ์ „์ž
    "hyundai": "005380.KS",  # ํ˜„๋Œ€์ž๋™์ฐจ
    "sk hynix": "000660.KS",  # SKํ•˜์ด๋‹‰์Šค
    "lg": "003550.KS",       # LG
    "lge": "066570.KS",      # LG์ „์ž
    "ncsoft": "036570.KS",   # ์—”์”จ์†Œํ”„ํŠธ
    "kakao": "035720.KS",    # ์นด์นด์˜ค
    "naver": "035420.KS",    # ๋„ค์ด๋ฒ„
    "ํ˜„๋Œ€์ฐจ": "005380.KS",    # ํ˜„๋Œ€์ž๋™์ฐจ
    "์‚ผ์„ฑ์ „์ž": "005930.KS",   # ์‚ผ์„ฑ์ „์ž
    "์‚ผ์„ฑ": "005930.KS",      # ์‚ผ์„ฑ์ „์ž
    "์นด์นด์˜ค": "035720.KS",    # ์นด์นด์˜ค
    "๋„ค์ด๋ฒ„": "035420.KS",    # ๋„ค์ด๋ฒ„
}

def fetch_articles(query, max_articles=30):
    try:
        logging.info(f"Fetching up to {max_articles} articles for query: '{query}'")
        googlenews = GoogleNews(lang="en")
        googlenews.search(query)
        
        # ์ฒซ ํŽ˜์ด์ง€ ๊ฒฐ๊ณผ ๊ฐ€์ ธ์˜ค๊ธฐ
        articles = googlenews.result()
        
        # ๋ชฉํ‘œ ๊ธฐ์‚ฌ ์ˆ˜์— ๋„๋‹ฌํ•  ๋•Œ๊นŒ์ง€ ์ถ”๊ฐ€ ํŽ˜์ด์ง€ ๊ฐ€์ ธ์˜ค๊ธฐ
        page = 2
        while len(articles) < max_articles and page <= 10:  # ์ตœ๋Œ€ 10ํŽ˜์ด์ง€๊นŒ์ง€๋งŒ ์‹œ๋„
            logging.info(f"Fetched {len(articles)} articles so far. Getting page {page}...")
            googlenews.get_page(page)
            page_results = googlenews.result()
            
            # ์ƒˆ ๊ฒฐ๊ณผ๊ฐ€ ์—†์œผ๋ฉด ์ค‘๋‹จ
            if not page_results:
                logging.info(f"No more results found after page {page-1}")
                break
                
            articles.extend(page_results)
            page += 1
            
        # ์ตœ๋Œ€ ๊ธฐ์‚ฌ ์ˆ˜๋กœ ์ œํ•œ
        articles = articles[:max_articles]
        
        logging.info(f"Successfully fetched {len(articles)} articles")
        return articles
    except Exception as e:
        logging.error(
            f"Error while searching articles for query: '{query}'. Error: {e}"
        )
        raise gr.Error(
            f"Unable to search articles for query: '{query}'. Try again later...",
            duration=5,
        )

def analyze_article_sentiment(article):
    logging.info(f"Analyzing sentiment for article: {article['title']}")
    sentiment = sentiment_analyzer(article["desc"])[0]
    article["sentiment"] = sentiment
    return article

def calculate_time_weight(article_date_str):
    """
    ๊ธฐ์‚ฌ ์‹œ๊ฐ„ ๊ธฐ์ค€์œผ๋กœ ๊ฐ€์ค‘์น˜ ๊ณ„์‚ฐ 
    - 1์‹œ๊ฐ„ ๋‚ด ๊ธฐ์‚ฌ๋Š” 24% ๊ฐ€์ค‘์น˜
    - ์‹œ๊ฐ„์ด ์ง€๋‚ ์ˆ˜๋ก 1%์”ฉ ๊ฐ์†Œ (์ตœ์†Œ 1%)
    - ์˜ˆ: 1์‹œ๊ฐ„ ๋‚ด ๊ธฐ์‚ฌ = 24%, 10์‹œ๊ฐ„ ์ „ ๊ธฐ์‚ฌ = 15%, 24์‹œ๊ฐ„ ์ „ ๊ธฐ์‚ฌ = 1%
    - 24์‹œ๊ฐ„ ์ด์ƒ์ด๋ฉด 1%๋กœ ๊ณ ์ •
    """
    try:
        # ๊ธฐ์‚ฌ ๋‚ ์งœ ๋ฌธ์ž์—ด ํŒŒ์‹ฑ (๋‹ค์–‘ํ•œ ํ˜•์‹ ์ฒ˜๋ฆฌ)
        date_formats = [
            '%a, %d %b %Y %H:%M:%S %z',  # ๊ธฐ๋ณธ GoogleNews ํ˜•์‹
            '%Y-%m-%d %H:%M:%S',
            '%a, %d %b %Y %H:%M:%S',
            '%Y-%m-%dT%H:%M:%S%z',
            '%a %b %d, %Y',
            '%d %b %Y'
        ]
        
        parsed_date = None
        for format_str in date_formats:
            try:
                parsed_date = datetime.strptime(article_date_str, format_str)
                break
            except ValueError:
                continue
        
        # ์–ด๋–ค ํ˜•์‹์œผ๋กœ๋„ ํŒŒ์‹ฑํ•  ์ˆ˜ ์—†์œผ๋ฉด ํ˜„์žฌ ์‹œ๊ฐ„ ๊ธฐ์ค€ 24์‹œ๊ฐ„ ์ „์œผ๋กœ ๊ฐ€์ •
        if parsed_date is None:
            logging.warning(f"Could not parse date: {article_date_str}, using default 24h ago")
            return 0.01  # ์ตœ์†Œ ๊ฐ€์ค‘์น˜ 1%
            
        # ํ˜„์žฌ ์‹œ๊ฐ„๊ณผ์˜ ์ฐจ์ด ๊ณ„์‚ฐ (์‹œ๊ฐ„ ๋‹จ์œ„)
        now = datetime.now()
        if parsed_date.tzinfo is not None:
            now = now.replace(tzinfo=parsed_date.tzinfo)
            
        hours_diff = (now - parsed_date).total_seconds() / 3600
        
        # 24์‹œ๊ฐ„ ์ด๋‚ด์ธ ๊ฒฝ์šฐ๋งŒ ๊ณ ๋ ค
        if hours_diff < 1:  # 1์‹œ๊ฐ„ ์ด๋‚ด
            return 0.24  # 24% ๊ฐ€์ค‘์น˜
        elif hours_diff < 24:  # 1~23์‹œ๊ฐ„
            # 1์‹œ๊ฐ„๋‹น 1%์”ฉ ๊ฐ์†Œ (1์‹œ๊ฐ„ = 24%, 2์‹œ๊ฐ„ = 23%, ...)
            return max(0.01, 0.24 - ((hours_diff - 1) * 0.01))
        else:
            return 0.01  # 24์‹œ๊ฐ„ ์ด์ƒ ์ง€๋‚œ ๊ธฐ์‚ฌ๋Š” 1% ๊ฐ€์ค‘์น˜
    except Exception as e:
        logging.error(f"Error calculating time weight: {e}")
        return 0.01  # ์˜ค๋ฅ˜ ๋ฐœ์ƒ ์‹œ ์ตœ์†Œ ๊ฐ€์ค‘์น˜ ์ ์šฉ

def calculate_sentiment_score(sentiment_label, time_weight):
    """
    ๊ฐ์„ฑ ๋ ˆ์ด๋ธ”์— ๋”ฐ๋ฅธ ๊ธฐ๋ณธ ์ ์ˆ˜ ๊ณ„์‚ฐ ๋ฐ ์‹œ๊ฐ„ ๊ฐ€์ค‘์น˜ ์ ์šฉ
    - positive: +3์ 
    - neutral: 0์ 
    - negative: -3์ 
    
    ์‹œ๊ฐ„ ๊ฐ€์ค‘์น˜๋Š” ๋ฐฑ๋ถ„์œจ๋กœ ์ ์šฉ (๊ธฐ๋ณธ ์ ์ˆ˜์— ๊ฐ€์ค‘์น˜ % ๋งŒํผ ์ถ”๊ฐ€)
    ์˜ˆ: 
    - 1์‹œ๊ฐ„ ๋‚ด ๊ธ์ • ๊ธฐ์‚ฌ: 3์  + (3 * 24%) = 3 + 0.72 = 3.72์ 
    - 10์‹œ๊ฐ„ ์ „ ๋ถ€์ • ๊ธฐ์‚ฌ: -3์  + (-3 * 15%) = -3 - 0.45 = -3.45์ 
    """
    base_score = {
        'positive': 3,
        'neutral': 0,
        'negative': -3
    }.get(sentiment_label, 0)
    
    # ๊ฐ€์ค‘์น˜๋ฅผ ์ ์šฉํ•œ ์ถ”๊ฐ€ ์ ์ˆ˜ ๊ณ„์‚ฐ
    weighted_addition = base_score * time_weight
    
    return base_score, weighted_addition

def get_stock_ticker(asset_name):
    """
    ์ž์‚ฐ๋ช…์œผ๋กœ๋ถ€ํ„ฐ ์ฃผ์‹ ํ‹ฐ์ปค ์‹ฌ๋ณผ์„ ์ถ”์ถœ
    """
    logging.info(f"Identifying ticker for: {asset_name}")
    
    # ์†Œ๋ฌธ์ž๋กœ ๋ณ€ํ™˜ํ•˜์—ฌ ๋งคํ•‘ ํ™•์ธ
    asset_lower = asset_name.lower().strip()
    
    # ์ง์ ‘ ํ‹ฐ์ปค๋กœ ์ž…๋ ฅํ•œ ๊ฒฝ์šฐ (๋Œ€๋ฌธ์ž 3-5์ž ํ˜•ํƒœ)
    if asset_name.isupper() and 2 <= len(asset_name) <= 6:
        logging.info(f"Input appears to be a ticker symbol: {asset_name}")
        return asset_name
    
    # ์ผ๋ฐ˜์ ์ธ ์ข…๋ชฉ๋ช… ๋งคํ•‘ ํ™•์ธ
    if asset_lower in COMMON_TICKERS:
        ticker = COMMON_TICKERS[asset_lower]
        logging.info(f"Found ticker in common tickers map: {ticker}")
        return ticker
    
    # ์—ฌ๋Ÿฌ ๋‹จ์–ด๋กœ ๋œ ์ด๋ฆ„์˜ ๊ฐ ๋ถ€๋ถ„์— ๋Œ€ํ•œ ๊ฒ€์ƒ‰๋„ ์‹œ๋„
    asset_parts = asset_lower.split()
    for part in asset_parts:
        if part in COMMON_TICKERS:
            ticker = COMMON_TICKERS[part]
            logging.info(f"Found ticker for part '{part}': {ticker}")
            return ticker
    
    # ๊ทธ ์™ธ์˜ ๊ฒฝ์šฐ ์ง์ ‘ ํ‹ฐ์ปค๋กœ ์‹œ๋„
    potential_ticker = asset_name.upper().replace(" ", "")
    if 2 <= len(potential_ticker) <= 6:
        # ์‹ค์ œ๋กœ ์กด์žฌํ•˜๋Š”์ง€ ํ™•์ธ
        try:
            logging.info(f"Trying potential ticker: {potential_ticker}")
            test_data = yf.download(potential_ticker, period="1d", progress=False)
            if not test_data.empty:
                logging.info(f"Valid ticker found: {potential_ticker}")
                return potential_ticker
        except Exception as e:
            logging.debug(f"Error testing potential ticker: {e}")
    
    # ๊ทธ ์™ธ์˜ ๊ฒฝ์šฐ yfinance๋กœ ๊ฒ€์ƒ‰ ์‹œ๋„ (info ๋ฐ์ดํ„ฐ)
    try:
        # ์ผ๋ถ€ ํ‹ฐ์ปค๋Š” ์ง์ ‘ yfinance ๊ธฐ๋ฐ˜ ๊ฒ€์ƒ‰์œผ๋กœ๋Š” ์˜ค๋ฅ˜๊ฐ€ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ์Œ
        ticker_search = yf.Ticker(asset_name)
        try:
            info = ticker_search.info
            if 'symbol' in info and info['symbol']:
                ticker = info['symbol']
                logging.info(f"Found ticker from info API: {ticker}")
                return ticker
        except (ValueError, KeyError, TypeError) as e:
            logging.debug(f"Error getting ticker info: {e}")
            pass
    except Exception as e:
        logging.debug(f"Error initializing ticker object: {e}")
    
    # ์ถ”๊ฐ€ ์‹œ๋„: ์ผ๋ฐ˜์ ์ธ ๋ฏธ๊ตญ ์ฆ์‹œ ํ‹ฐ์ปค ํ˜•์‹ ํ™•์ธ
    major_exchanges = ["", ".KS", ".KQ", "-USD"]  # ์ฃผ์š” ๊ฑฐ๋ž˜์†Œ ์ ‘๋ฏธ์‚ฌ (ํ•œ๊ตญ ํฌํ•จ)
    for exchange in major_exchanges:
        try:
            test_ticker = f"{asset_name.upper().replace(' ', '')}{exchange}"
            logging.info(f"Trying with exchange suffix: {test_ticker}")
            test_data = yf.download(test_ticker, period="1d", progress=False)
            if not test_data.empty:
                logging.info(f"Valid ticker found with suffix: {test_ticker}")
                return test_ticker
        except:
            pass
    
    logging.warning(f"Could not identify ticker for: {asset_name}")
    return None

def create_stock_chart(ticker, period="1mo"):
    """
    ์ฃผ์‹ ํ‹ฐ์ปค์— ๋Œ€ํ•œ ์ฐจํŠธ ์ƒ์„ฑ
    """
    try:
        logging.info(f"Fetching stock data for {ticker}")
        # Graceful handling for problematic symbols
        try:
            stock_data = yf.download(ticker, period=period, progress=False)
        except Exception as dl_error:
            logging.error(f"Error downloading stock data: {dl_error}")
            # Try alternative symbol format
            if "-" in ticker:
                alt_ticker = ticker.replace("-", ".")
                logging.info(f"Trying alternative ticker format: {alt_ticker}")
                stock_data = yf.download(alt_ticker, period=period, progress=False)
            else:
                raise dl_error
        
        if len(stock_data) == 0:
            logging.warning(f"No stock data found for ticker: {ticker}")
            return None
            
        # ๋ฐ์ดํ„ฐ ํ™•์ธ ๋ฐ ๋””๋ฒ„๊ทธ ๋กœ๊น…
        logging.info(f"Downloaded data shape: {stock_data.shape}")
        logging.info(f"Data columns: {stock_data.columns.tolist()}")
        
        # ๊ทธ๋ž˜ํ”„ ์ž‘์„ฑ
        fig, ax = plt.subplots(figsize=(10, 6))
        
        # ์ข…๊ฐ€ ๊ทธ๋ž˜ํ”„ - ๋ฉ€ํ‹ฐ์ธ๋ฑ์Šค ์ฒ˜๋ฆฌ
        if isinstance(stock_data.columns, pd.MultiIndex):
            # ๋ฉ€ํ‹ฐ์ธ๋ฑ์Šค์ธ ๊ฒฝ์šฐ ('Close', ticker) ํ˜•ํƒœ
            close_col = ('Close', ticker)
            if close_col in stock_data.columns:
                ax.plot(stock_data.index, stock_data[close_col], label='Close Price', color='blue')
                
                # ์ด๋™ํ‰๊ท ์„  ์ถ”๊ฐ€ (20์ผ)
                if len(stock_data) > 20:
                    stock_data['MA20'] = stock_data[close_col].rolling(window=20).mean()
                    ax.plot(stock_data.index, stock_data['MA20'], label='20-day MA', color='orange')
                
                # ๊ฑฐ๋ž˜๋Ÿ‰ ์„œ๋ธŒํ”Œ๋กฏ ์ถ”๊ฐ€ (๊ฑฐ๋ž˜๋Ÿ‰์ด ์žˆ๋Š” ๊ฒฝ์šฐ๋งŒ)
                volume_col = ('Volume', ticker)
                if volume_col in stock_data.columns and not stock_data[volume_col].isna().all():
                    ax2 = ax.twinx()
                    ax2.bar(stock_data.index, stock_data[volume_col], alpha=0.3, color='gray', label='Volume')
                    ax2.set_ylabel('Volume')
                    
                    # ๋ฒ”๋ก€ ์ถ”๊ฐ€ (๊ฑฐ๋ž˜๋Ÿ‰ ์žˆ๋Š” ๊ฒฝ์šฐ)
                    lines, labels = ax.get_legend_handles_labels()
                    lines2, labels2 = ax2.get_legend_handles_labels()
                    ax.legend(lines + lines2, labels + labels2, loc='upper left')
                else:
                    # ๊ฑฐ๋ž˜๋Ÿ‰ ์—†๋Š” ๊ฒฝ์šฐ ์ข…๊ฐ€๋งŒ ํ‘œ์‹œ
                    ax.legend(loc='upper left')
            else:
                raise ValueError(f"Close column not found in data columns: {stock_data.columns}")
        else:
            # ์ผ๋ฐ˜ ์ธ๋ฑ์Šค์ธ ๊ฒฝ์šฐ
            if 'Close' in stock_data.columns:
                ax.plot(stock_data.index, stock_data['Close'], label='Close Price', color='blue')
                
                # ์ด๋™ํ‰๊ท ์„  ์ถ”๊ฐ€ (20์ผ)
                if len(stock_data) > 20:
                    stock_data['MA20'] = stock_data['Close'].rolling(window=20).mean()
                    ax.plot(stock_data.index, stock_data['MA20'], label='20-day MA', color='orange')
                
                # ๊ฑฐ๋ž˜๋Ÿ‰ ์„œ๋ธŒํ”Œ๋กฏ ์ถ”๊ฐ€ (๊ฑฐ๋ž˜๋Ÿ‰์ด ์žˆ๋Š” ๊ฒฝ์šฐ๋งŒ)
                if 'Volume' in stock_data.columns and not stock_data['Volume'].isna().all():
                    ax2 = ax.twinx()
                    ax2.bar(stock_data.index, stock_data['Volume'], alpha=0.3, color='gray', label='Volume')
                    ax2.set_ylabel('Volume')
                    
                    # ๋ฒ”๋ก€ ์ถ”๊ฐ€ (๊ฑฐ๋ž˜๋Ÿ‰ ์žˆ๋Š” ๊ฒฝ์šฐ)
                    lines, labels = ax.get_legend_handles_labels()
                    lines2, labels2 = ax2.get_legend_handles_labels()
                    ax.legend(lines + lines2, labels + labels2, loc='upper left')
                else:
                    # ๊ฑฐ๋ž˜๋Ÿ‰ ์—†๋Š” ๊ฒฝ์šฐ ์ข…๊ฐ€๋งŒ ํ‘œ์‹œ
                    ax.legend(loc='upper left')
            else:
                raise ValueError(f"Close column not found in data columns: {stock_data.columns}")
        
        # ์ฐจํŠธ ์Šคํƒ€์ผ๋ง
        ax.set_title(f"{ticker} Stock Price")
        ax.set_xlabel('Date')
        ax.set_ylabel('Price')
        ax.grid(True, alpha=0.3)
        
        plt.tight_layout()
        
        # ์ด๋ฏธ์ง€ ์ €์žฅ
        chart_path = f"stock_chart_{ticker.replace('-', '_').replace('.', '_')}.png"
        plt.savefig(chart_path)
        plt.close()
        
        logging.info(f"Stock chart created: {chart_path}")
        return chart_path
    except Exception as e:
        logging.error(f"Error creating stock chart for {ticker}: {e}")
        # ์˜ค๋ฅ˜ ๋ฐœ์ƒ ์‹œ์—๋„ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ ์‹œ๋„ (๊ธฐ๋ณธ ํ…์ŠคํŠธ ์•ˆ๋‚ด)
        try:
            fig, ax = plt.subplots(figsize=(10, 6))
            ax.text(0.5, 0.5, f"Unable to load data for {ticker}\nError: {str(e)}", 
                    horizontalalignment='center', verticalalignment='center', transform=ax.transAxes)
            ax.set_axis_off()
            chart_path = f"stock_chart_error_{ticker.replace('-', '_').replace('.', '_')}.png"
            plt.savefig(chart_path)
            plt.close()
            return chart_path
        except:
            return None

def analyze_asset_sentiment(asset_name):
    logging.info(f"Starting sentiment analysis for asset: {asset_name}")
    logging.info("Fetching up to 30 articles")
    articles = fetch_articles(asset_name, max_articles=30)
    logging.info("Analyzing sentiment of each article")
    analyzed_articles = [analyze_article_sentiment(article) for article in articles]
    
    # ๊ฐ ๊ธฐ์‚ฌ์— ๋Œ€ํ•œ ์‹œ๊ฐ„ ๊ฐ€์ค‘์น˜ ๋ฐ ๊ฐ์„ฑ ์ ์ˆ˜ ๊ณ„์‚ฐ
    for article in analyzed_articles:
        time_weight = calculate_time_weight(article["date"])
        article["time_weight"] = time_weight
        
        sentiment_label = article["sentiment"]["label"]
        base_score, weighted_addition = calculate_sentiment_score(sentiment_label, time_weight)
        
        article["base_score"] = base_score
        article["weighted_addition"] = weighted_addition
        article["total_score"] = base_score + weighted_addition
    
    logging.info("Sentiment analysis completed")
    
    # ์ข…ํ•ฉ ์ ์ˆ˜ ๊ณ„์‚ฐ ๋ฐ ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
    sentiment_summary = create_sentiment_summary(analyzed_articles, asset_name)
    
    # ์ฃผ์‹ ํ‹ฐ์ปค ํ™•์ธ ๋ฐ ์ฐจํŠธ ์ƒ์„ฑ
    stock_chart = None
    ticker = get_stock_ticker(asset_name)
    if ticker:
        logging.info(f"Found ticker {ticker} for asset {asset_name}")
        stock_chart = create_stock_chart(ticker)
    
    return convert_to_dataframe(analyzed_articles), sentiment_summary, stock_chart, ticker

def create_sentiment_summary(analyzed_articles, asset_name):
    """
    ๊ฐ์„ฑ ๋ถ„์„ ๊ฒฐ๊ณผ๋ฅผ ์š”์•ฝํ•˜๊ณ  ๊ทธ๋ž˜ํ”„๋กœ ์‹œ๊ฐํ™”
    """
    total_articles = len(analyzed_articles)
    positive_count = sum(1 for a in analyzed_articles if a["sentiment"]["label"] == "positive")
    neutral_count = sum(1 for a in analyzed_articles if a["sentiment"]["label"] == "neutral")
    negative_count = sum(1 for a in analyzed_articles if a["sentiment"]["label"] == "negative")
    
    # ๊ธฐ๋ณธ ์ ์ˆ˜ ํ•ฉ๊ณ„
    base_score_sum = sum(a["base_score"] for a in analyzed_articles)
    
    # ๊ฐ€์ค‘์น˜ ์ ์šฉ ์ ์ˆ˜ ํ•ฉ๊ณ„
    weighted_score_sum = sum(a["total_score"] for a in analyzed_articles)
    
    # ๊ทธ๋ž˜ํ”„ ์ƒ์„ฑ
    fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
    
    # 1. ๊ฐ์„ฑ ๋ถ„ํฌ ํŒŒ์ด ์ฐจํŠธ
    labels = ['Positive', 'Neutral', 'Negative']
    sizes = [positive_count, neutral_count, negative_count]
    colors = ['green', 'gray', 'red']
    
    ax1.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
    ax1.axis('equal')
    ax1.set_title(f'Sentiment Distribution for {asset_name}')
    
    # 2. ์‹œ๊ฐ„๋ณ„ ๊ฐ€์ค‘์น˜ ์ ์šฉ ์ ์ˆ˜ (์ •๋ ฌ)
    sorted_articles = sorted(analyzed_articles, key=lambda x: x.get("date", ""), reverse=True)
    
    # ์ตœ๋Œ€ ํ‘œ์‹œํ•  ๊ธฐ์‚ฌ ์ˆ˜ (๊ฐ€๋…์„ฑ์„ ์œ„ํ•ด)
    max_display = min(15, len(sorted_articles))
    display_articles = sorted_articles[:max_display]
    
    dates = [a.get("date", "")[:10] for a in display_articles]  # ๋‚ ์งœ ๋ถ€๋ถ„๋งŒ ํ‘œ์‹œ
    scores = [a.get("total_score", 0) for a in display_articles]
    
    # ์ ์ˆ˜์— ๋”ฐ๋ฅธ ์ƒ‰์ƒ ์„ค์ •
    bar_colors = ['green' if s > 0 else 'red' if s < 0 else 'gray' for s in scores]
    
    bars = ax2.bar(range(len(dates)), scores, color=bar_colors)
    ax2.set_xticks(range(len(dates)))
    ax2.set_xticklabels(dates, rotation=45, ha='right')
    ax2.set_ylabel('Weighted Sentiment Score')
    ax2.set_title(f'Recent Article Scores for {asset_name}')
    ax2.axhline(y=0, color='black', linestyle='-', alpha=0.3)
    
    # ์š”์•ฝ ํ…์ŠคํŠธ ์ถ”๊ฐ€
    summary_text = f"""
    Analysis Summary for {asset_name}:
    Total Articles: {total_articles}
    Positive: {positive_count} ({positive_count/total_articles*100:.1f}%)
    Neutral: {neutral_count} ({neutral_count/total_articles*100:.1f}%)
    Negative: {negative_count} ({negative_count/total_articles*100:.1f}%)
    
    Base Score Sum: {base_score_sum:.2f}
    Weighted Score Sum: {weighted_score_sum:.2f}
    """
    
    plt.figtext(0.5, 0.01, summary_text, ha='center', fontsize=10, bbox={"facecolor":"orange", "alpha":0.2, "pad":5})
    
    plt.tight_layout(rect=[0, 0.1, 1, 0.95])
    
    # ์ด๋ฏธ์ง€ ์ €์žฅ
    fig_path = f"sentiment_summary_{asset_name.replace(' ', '_')}.png"
    plt.savefig(fig_path)
    plt.close()
    
    return fig_path

def convert_to_dataframe(analyzed_articles):
    df = pd.DataFrame(analyzed_articles)
    df["Title"] = df.apply(
        lambda row: f'<a href="{row["link"]}" target="_blank">{row["title"]}</a>',
        axis=1,
    )
    df["Description"] = df["desc"]
    df["Date"] = df["date"]
    
    def sentiment_badge(sentiment):
        colors = {
            "negative": "red",
            "neutral": "gray",
            "positive": "green",
        }
        color = colors.get(sentiment, "grey")
        return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 4px;">{sentiment}</span>'
    
    df["Sentiment"] = df["sentiment"].apply(lambda x: sentiment_badge(x["label"]))
    
    # ์ ์ˆ˜ ์ปฌ๋Ÿผ ์ถ”๊ฐ€
    df["Base Score"] = df["base_score"]
    df["Weight"] = df["time_weight"].apply(lambda x: f"{x*100:.0f}%")
    df["Total Score"] = df["total_score"].apply(lambda x: f"{x:.2f}")
    
    return df[["Sentiment", "Title", "Description", "Date", "Base Score", "Weight", "Total Score"]]

def main():
    with gr.Blocks() as iface:
        gr.Markdown("# Trading Asset Sentiment Analysis")
        gr.Markdown(
            "Enter the name of a trading asset, and I'll fetch recent articles and analyze their sentiment!"
        )
        
        with gr.Row():
            input_asset = gr.Textbox(
                label="Asset Name",
                lines=1,
                placeholder="Enter the name of the trading asset...",
            )
        
        with gr.Row():
            analyze_button = gr.Button("Analyze Sentiment", size="sm")
        
        # ์˜ˆ์ œ ์ž…๋ ฅ๊ฐ’์„ ์ฝ”๋“œ์— ์ •์˜๋œ ํ‹ฐ์ปค ๋งคํ•‘์˜ ํ‚ค๋“ค๋กœ ๋ฐ˜์˜ (์ค‘๋ณต๋˜์ง€ ์•Š๋„๋ก ์ •๋ ฌ)
        examples_list = sorted(set(COMMON_TICKERS.keys()), key=lambda x: x.lower())
        gr.Examples(
            examples=examples_list,
            inputs=input_asset,
        )
        
        # ์ฃผ์‹ ์ฐจํŠธ ์˜์—ญ ์ถ”๊ฐ€
        with gr.Row():
            with gr.Column():
                with gr.Blocks():
                    gr.Markdown("## Stock Chart")
                    with gr.Row():
                        stock_chart = gr.Image(type="filepath", label="Stock Price Chart")
                        ticker_info = gr.Textbox(label="Ticker Symbol")
        
        with gr.Row():
            with gr.Column():
                with gr.Blocks():
                    gr.Markdown("## Sentiment Summary")
                    sentiment_summary = gr.Image(type="filepath", label="Sentiment Analysis Summary")
        
        with gr.Row():
            with gr.Column():
                with gr.Blocks():
                    gr.Markdown("## Articles and Sentiment Analysis")
                    articles_output = gr.Dataframe(
                        headers=["Sentiment", "Title", "Description", "Date", "Base Score", "Weight", "Total Score"],
                        datatype=["markdown", "html", "markdown", "markdown", "number", "markdown", "markdown"],
                        wrap=False,
                    )
        
        analyze_button.click(
            analyze_asset_sentiment,
            inputs=[input_asset],
            outputs=[articles_output, sentiment_summary, stock_chart, ticker_info],
        )

    logging.info("Launching Gradio interface")
    iface.queue().launch()

if __name__ == "__main__":
    main()