Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
import logging
|
2 |
-
|
3 |
import gradio as gr
|
4 |
import pandas as pd
|
5 |
import torch
|
@@ -14,24 +13,42 @@ logging.basicConfig(
|
|
14 |
SENTIMENT_ANALYSIS_MODEL = (
|
15 |
"mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
|
16 |
)
|
17 |
-
|
18 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
19 |
logging.info(f"Using device: {DEVICE}")
|
20 |
-
|
21 |
logging.info("Initializing sentiment analysis model...")
|
22 |
sentiment_analyzer = pipeline(
|
23 |
"sentiment-analysis", model=SENTIMENT_ANALYSIS_MODEL, device=DEVICE
|
24 |
)
|
25 |
logging.info("Model initialized successfully")
|
26 |
|
27 |
-
|
28 |
-
def fetch_articles(query):
|
29 |
try:
|
30 |
-
logging.info(f"Fetching articles for query: '{query}'")
|
31 |
googlenews = GoogleNews(lang="en")
|
32 |
googlenews.search(query)
|
|
|
|
|
33 |
articles = googlenews.result()
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
return articles
|
36 |
except Exception as e:
|
37 |
logging.error(
|
@@ -42,28 +59,21 @@ def fetch_articles(query):
|
|
42 |
duration=5,
|
43 |
)
|
44 |
|
45 |
-
|
46 |
def analyze_article_sentiment(article):
|
47 |
logging.info(f"Analyzing sentiment for article: {article['title']}")
|
48 |
sentiment = sentiment_analyzer(article["desc"])[0]
|
49 |
article["sentiment"] = sentiment
|
50 |
return article
|
51 |
|
52 |
-
|
53 |
def analyze_asset_sentiment(asset_name):
|
54 |
logging.info(f"Starting sentiment analysis for asset: {asset_name}")
|
55 |
-
|
56 |
-
|
57 |
-
articles = fetch_articles(asset_name)
|
58 |
-
|
59 |
logging.info("Analyzing sentiment of each article")
|
60 |
analyzed_articles = [analyze_article_sentiment(article) for article in articles]
|
61 |
-
|
62 |
logging.info("Sentiment analysis completed")
|
63 |
-
|
64 |
return convert_to_dataframe(analyzed_articles)
|
65 |
|
66 |
-
|
67 |
def convert_to_dataframe(analyzed_articles):
|
68 |
df = pd.DataFrame(analyzed_articles)
|
69 |
df["Title"] = df.apply(
|
@@ -72,7 +82,7 @@ def convert_to_dataframe(analyzed_articles):
|
|
72 |
)
|
73 |
df["Description"] = df["desc"]
|
74 |
df["Date"] = df["date"]
|
75 |
-
|
76 |
def sentiment_badge(sentiment):
|
77 |
colors = {
|
78 |
"negative": "red",
|
@@ -81,27 +91,26 @@ def convert_to_dataframe(analyzed_articles):
|
|
81 |
}
|
82 |
color = colors.get(sentiment, "grey")
|
83 |
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 4px;">{sentiment}</span>'
|
84 |
-
|
85 |
df["Sentiment"] = df["sentiment"].apply(lambda x: sentiment_badge(x["label"]))
|
86 |
return df[["Sentiment", "Title", "Description", "Date"]]
|
87 |
|
88 |
-
|
89 |
with gr.Blocks() as iface:
|
90 |
gr.Markdown("# Trading Asset Sentiment Analysis")
|
91 |
gr.Markdown(
|
92 |
"Enter the name of a trading asset, and I'll fetch recent articles and analyze their sentiment!"
|
93 |
)
|
94 |
-
|
95 |
with gr.Row():
|
96 |
input_asset = gr.Textbox(
|
97 |
label="Asset Name",
|
98 |
lines=1,
|
99 |
placeholder="Enter the name of the trading asset...",
|
100 |
)
|
101 |
-
|
102 |
with gr.Row():
|
103 |
analyze_button = gr.Button("Analyze Sentiment", size="sm")
|
104 |
-
|
105 |
gr.Examples(
|
106 |
examples=[
|
107 |
"Bitcoin",
|
@@ -111,7 +120,7 @@ with gr.Blocks() as iface:
|
|
111 |
],
|
112 |
inputs=input_asset,
|
113 |
)
|
114 |
-
|
115 |
with gr.Row():
|
116 |
with gr.Column():
|
117 |
with gr.Blocks():
|
@@ -121,7 +130,7 @@ with gr.Blocks() as iface:
|
|
121 |
datatype=["markdown", "html", "markdown", "markdown"],
|
122 |
wrap=False,
|
123 |
)
|
124 |
-
|
125 |
analyze_button.click(
|
126 |
analyze_asset_sentiment,
|
127 |
inputs=[input_asset],
|
@@ -129,5 +138,4 @@ with gr.Blocks() as iface:
|
|
129 |
)
|
130 |
|
131 |
logging.info("Launching Gradio interface")
|
132 |
-
iface.queue().launch()
|
133 |
-
|
|
|
1 |
import logging
|
|
|
2 |
import gradio as gr
|
3 |
import pandas as pd
|
4 |
import torch
|
|
|
13 |
SENTIMENT_ANALYSIS_MODEL = (
|
14 |
"mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis"
|
15 |
)
|
|
|
16 |
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
logging.info(f"Using device: {DEVICE}")
|
|
|
18 |
logging.info("Initializing sentiment analysis model...")
|
19 |
sentiment_analyzer = pipeline(
|
20 |
"sentiment-analysis", model=SENTIMENT_ANALYSIS_MODEL, device=DEVICE
|
21 |
)
|
22 |
logging.info("Model initialized successfully")
|
23 |
|
24 |
+
def fetch_articles(query, max_articles=30):
|
|
|
25 |
try:
|
26 |
+
logging.info(f"Fetching up to {max_articles} articles for query: '{query}'")
|
27 |
googlenews = GoogleNews(lang="en")
|
28 |
googlenews.search(query)
|
29 |
+
|
30 |
+
# 첫 페이지 결과 가져오기
|
31 |
articles = googlenews.result()
|
32 |
+
|
33 |
+
# 목표 기사 수에 도달할 때까지 추가 페이지 가져오기
|
34 |
+
page = 2
|
35 |
+
while len(articles) < max_articles and page <= 10: # 최대 10페이지까지만 시도
|
36 |
+
logging.info(f"Fetched {len(articles)} articles so far. Getting page {page}...")
|
37 |
+
googlenews.get_page(page)
|
38 |
+
page_results = googlenews.result()
|
39 |
+
|
40 |
+
# 새 결과가 없으면 중단
|
41 |
+
if not page_results:
|
42 |
+
logging.info(f"No more results found after page {page-1}")
|
43 |
+
break
|
44 |
+
|
45 |
+
articles.extend(page_results)
|
46 |
+
page += 1
|
47 |
+
|
48 |
+
# 최대 기사 수로 제한
|
49 |
+
articles = articles[:max_articles]
|
50 |
+
|
51 |
+
logging.info(f"Successfully fetched {len(articles)} articles")
|
52 |
return articles
|
53 |
except Exception as e:
|
54 |
logging.error(
|
|
|
59 |
duration=5,
|
60 |
)
|
61 |
|
|
|
62 |
def analyze_article_sentiment(article):
|
63 |
logging.info(f"Analyzing sentiment for article: {article['title']}")
|
64 |
sentiment = sentiment_analyzer(article["desc"])[0]
|
65 |
article["sentiment"] = sentiment
|
66 |
return article
|
67 |
|
|
|
68 |
def analyze_asset_sentiment(asset_name):
|
69 |
logging.info(f"Starting sentiment analysis for asset: {asset_name}")
|
70 |
+
logging.info("Fetching up to 30 articles")
|
71 |
+
articles = fetch_articles(asset_name, max_articles=30)
|
|
|
|
|
72 |
logging.info("Analyzing sentiment of each article")
|
73 |
analyzed_articles = [analyze_article_sentiment(article) for article in articles]
|
|
|
74 |
logging.info("Sentiment analysis completed")
|
|
|
75 |
return convert_to_dataframe(analyzed_articles)
|
76 |
|
|
|
77 |
def convert_to_dataframe(analyzed_articles):
|
78 |
df = pd.DataFrame(analyzed_articles)
|
79 |
df["Title"] = df.apply(
|
|
|
82 |
)
|
83 |
df["Description"] = df["desc"]
|
84 |
df["Date"] = df["date"]
|
85 |
+
|
86 |
def sentiment_badge(sentiment):
|
87 |
colors = {
|
88 |
"negative": "red",
|
|
|
91 |
}
|
92 |
color = colors.get(sentiment, "grey")
|
93 |
return f'<span style="background-color: {color}; color: white; padding: 2px 6px; border-radius: 4px;">{sentiment}</span>'
|
94 |
+
|
95 |
df["Sentiment"] = df["sentiment"].apply(lambda x: sentiment_badge(x["label"]))
|
96 |
return df[["Sentiment", "Title", "Description", "Date"]]
|
97 |
|
|
|
98 |
with gr.Blocks() as iface:
|
99 |
gr.Markdown("# Trading Asset Sentiment Analysis")
|
100 |
gr.Markdown(
|
101 |
"Enter the name of a trading asset, and I'll fetch recent articles and analyze their sentiment!"
|
102 |
)
|
103 |
+
|
104 |
with gr.Row():
|
105 |
input_asset = gr.Textbox(
|
106 |
label="Asset Name",
|
107 |
lines=1,
|
108 |
placeholder="Enter the name of the trading asset...",
|
109 |
)
|
110 |
+
|
111 |
with gr.Row():
|
112 |
analyze_button = gr.Button("Analyze Sentiment", size="sm")
|
113 |
+
|
114 |
gr.Examples(
|
115 |
examples=[
|
116 |
"Bitcoin",
|
|
|
120 |
],
|
121 |
inputs=input_asset,
|
122 |
)
|
123 |
+
|
124 |
with gr.Row():
|
125 |
with gr.Column():
|
126 |
with gr.Blocks():
|
|
|
130 |
datatype=["markdown", "html", "markdown", "markdown"],
|
131 |
wrap=False,
|
132 |
)
|
133 |
+
|
134 |
analyze_button.click(
|
135 |
analyze_asset_sentiment,
|
136 |
inputs=[input_asset],
|
|
|
138 |
)
|
139 |
|
140 |
logging.info("Launching Gradio interface")
|
141 |
+
iface.queue().launch()
|
|