from transformers import ( Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer, ) from PIL import Image from threading import Thread import gradio as gr import spaces import subprocess subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True) model_name = "scb10x/typhoon2-qwen2vl-7b-vision-instruct" model = Qwen2VLForConditionalGeneration.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) min_pixels = 256 * 28 * 28 max_pixels = 1280 * 28 * 28 processor = AutoProcessor.from_pretrained( model_name, min_pixels=min_pixels, max_pixels=max_pixels ) theme = gr.themes.Soft( primary_hue=gr.themes.Color( c50="#f7f7fd", c100="#dfdef8", c200="#c4c1f2", c300="#a29eea", c400="#8f8ae6", c500="#756fe0", c600="#635cc1", c700="#4f4a9b", c800="#433f83", c900="#302d5e", c950="#302d5e", ), secondary_hue="rose", neutral_hue="stone", ) @spaces.GPU def bot_streaming(message, history, max_new_tokens=512): txt = message["text"] messages = [] images = [] for i, msg in enumerate(history): if isinstance(msg[0], tuple): messages.append( { "role": "user", "content": [ {"type": "text", "text": history[i + 1][0]}, {"type": "image"}, ], } ) messages.append( { "role": "assistant", "content": [{"type": "text", "text": history[i + 1][1]}], } ) images.append(Image.open(msg[0][0]).convert("RGB")) elif isinstance(history[i - 1], tuple) and isinstance(msg[0], str): pass elif isinstance(history[i - 1][0], str) and isinstance(msg[0], str): messages.append( {"role": "user", "content": [{"type": "text", "text": msg[0]}]} ) messages.append( {"role": "assistant", "content": [{"type": "text", "text": msg[1]}]} ) if len(message["files"]) == 1: if isinstance(message["files"][0], str): image = Image.open(message["files"][0]).convert("RGB") else: image = Image.open(message["files"][0]["path"]).convert("RGB") images.append(image) messages.append( { "role": "user", "content": [{"type": "text", "text": txt}, {"type": "image"}], } ) else: messages.append({"role": "user", "content": [{"type": "text", "text": txt}]}) texts = processor.apply_chat_template(messages, add_generation_prompt=True) if images == []: inputs = processor(text=texts, return_tensors="pt").to("cuda") else: inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda") streamer = TextIteratorStreamer( processor, skip_special_tokens=True, skip_prompt=True ) generation_kwargs = dict( inputs, streamer=streamer, max_new_tokens=max_new_tokens, do_sample=True, temperature=0.6, top_p=0.9, ) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() buffer = "" for new_text in streamer: buffer += new_text yield buffer demo = gr.ChatInterface( fn=bot_streaming, title="🌪️ Typhoon2-Vision: Vision-Language Model optimized for Thai (Research Preview)", description="""
Disclaimer The responses generated by this Artificial Intelligence (AI) system are autonomously constructed and do not necessarily reflect the views or positions of the developing organizations, their affiliates, or any of their employees. These AI-generated responses do not represent those of the organizations. The organizations do not endorse, support, sanction, encourage, verify, or agree with the comments, opinions, or statements generated by this AI. The information produced by this AI is not intended to malign any religion, ethnic group, club, organization, company, individual, anyone, or anything. It is not the intent of the organizations to malign any group or individual. The AI operates based on its programming and training data and its responses should not be interpreted as the explicit intent or opinion of the organizations.

Terms of use By using this service, users are required to agree to the following terms: The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. Vision language models are prone to hallucinations to a greater extent compared to text-only LLMs.

License This project utilizes certain datasets and checkpoints that are subject to their respective original licenses. Users must comply with all terms and conditions of these original licenses. The content of this project itself is licensed under the Apache license 2.0.
""", textbox=gr.MultimodalTextbox( placeholder="Type a message or drag and drop an image", file_types=["image"], file_count="multiple", ), additional_inputs=[ gr.Slider( minimum=512, maximum=1024, value=512, step=1, label="Maximum number of new tokens to generate", ) ], cache_examples=False, stop_btn="Stop Generation", fill_height=True, multimodal=True, theme=theme, # css="footer {visibility: hidden}", ) demo.queue() demo.launch(ssr_mode=False)