Update app.py
Browse files
app.py
CHANGED
|
@@ -96,52 +96,45 @@ def encode_string(text, model, prompt=None):
|
|
| 96 |
else:
|
| 97 |
return model.encode(text, convert_to_tensor=True, normalize_embeddings=True, batch_size=batch_size)
|
| 98 |
|
| 99 |
-
def process_movies(model, embeddings_file, movie_embeddings, movies_queue,
|
| 100 |
"""
|
| 101 |
Обрабатывает фильмы из очереди, создавая для них эмбеддинги.
|
| 102 |
"""
|
|
|
|
|
|
|
| 103 |
while True:
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
embeddings = model.encode(embedding_strings, convert_to_tensor=True, batch_size=batch_size, normalize_embeddings=True).tolist()
|
| 137 |
-
|
| 138 |
-
with lock:
|
| 139 |
-
for title, embedding in zip(titles, embeddings):
|
| 140 |
-
movie_embeddings[title] = embedding
|
| 141 |
-
# Сохраняем эмбеддинги в файл после обработки каждого пакета
|
| 142 |
-
with open(embeddings_file, "w", encoding="utf-8") as f:
|
| 143 |
-
json.dump(movie_embeddings, f, ensure_ascii=False, indent=4)
|
| 144 |
-
print(f"Эмбеддинги для фильмов ({model_name}): {', '.join(titles)} созданы и сохранены.")
|
| 145 |
|
| 146 |
print(f"Обработка фильмов для {model_name} завершена.")
|
| 147 |
|
|
@@ -164,7 +157,7 @@ def get_query_embedding(query, model, query_embeddings, query_embeddings_file, p
|
|
| 164 |
print(f"Эмбеддинг для запроса '{query}' создан и сохранен.")
|
| 165 |
return embedding
|
| 166 |
|
| 167 |
-
def search_movies(query, model, movie_embeddings, movies_data, top_k=10,
|
| 168 |
"""
|
| 169 |
Ищет наиболее похожие фильмы по запросу с использова��ием инструкции.
|
| 170 |
|
|
@@ -174,43 +167,38 @@ def search_movies(query, model, movie_embeddings, movies_data, top_k=10, search_
|
|
| 174 |
movie_embeddings: Словарь с эмбеддингами фильмов.
|
| 175 |
movies_data: Данные о фильмах.
|
| 176 |
top_k: Количество возвращаемых результатов.
|
| 177 |
-
|
| 178 |
|
| 179 |
Returns:
|
| 180 |
Строку с результатами поиска в формате HTML.
|
| 181 |
"""
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
search_in_progress_kalm = True
|
| 186 |
-
|
| 187 |
-
global search_in_progress_bge
|
| 188 |
search_in_progress_bge = True
|
|
|
|
| 189 |
start_time = time.time()
|
| 190 |
print(f"\n\033[1mПоиск по запросу: '{query}'\033[0m")
|
| 191 |
|
| 192 |
print(f"Начало создания эмбеддинга для запроса: {time.strftime('%Y-%m-%d %H:%M:%S')}")
|
| 193 |
-
|
| 194 |
-
query_embedding_tensor = encode_string(query, model_kalm, prompt=query_prompt)
|
| 195 |
-
else:
|
| 196 |
-
query_embedding_tensor = encode_string(query, model)
|
| 197 |
-
|
| 198 |
print(f"Окончание создания эмбеддинга для запроса: {time.strftime('%Y-%m-%d %H:%M:%S')}")
|
| 199 |
|
| 200 |
if model == model_kalm:
|
| 201 |
-
|
| 202 |
-
|
| 203 |
elif model == model_bge:
|
| 204 |
-
|
| 205 |
-
|
| 206 |
|
| 207 |
if not current_movie_embeddings:
|
| 208 |
-
|
| 209 |
-
if model == model_kalm:
|
| 210 |
search_in_progress_kalm = False
|
| 211 |
-
|
| 212 |
search_in_progress_bge = False
|
| 213 |
-
|
| 214 |
|
| 215 |
# Преобразуем эмбеддинги фильмов в тензор
|
| 216 |
movie_titles = list(current_movie_embeddings.keys())
|
|
@@ -242,25 +230,27 @@ def search_movies(query, model, movie_embeddings, movies_data, top_k=10, search_
|
|
| 242 |
end_time = time.time()
|
| 243 |
execution_time = end_time - start_time
|
| 244 |
print(f"Поиск завершен за {execution_time:.4f} секунд.")
|
| 245 |
-
|
| 246 |
-
|
| 247 |
search_in_progress_kalm = False
|
| 248 |
-
|
| 249 |
search_in_progress_bge = False
|
|
|
|
| 250 |
return results_html
|
| 251 |
|
| 252 |
# Потоки для обработки фильмов
|
| 253 |
-
processing_thread_kalm = threading.Thread(target=process_movies, args=(model_kalm, embeddings_file_kalm, movie_embeddings_kalm, movies_queue_kalm,
|
| 254 |
-
processing_thread_bge = threading.Thread(target=process_movies, args=(model_bge, embeddings_file_bge, movie_embeddings_bge, movies_queue_bge,
|
| 255 |
|
| 256 |
# Запускаем потоки для обработки фильмов
|
| 257 |
processing_thread_kalm.start()
|
| 258 |
processing_thread_bge.start()
|
| 259 |
|
| 260 |
def search_with_kalm(query):
|
| 261 |
-
|
|
|
|
| 262 |
def search_with_bge(query):
|
| 263 |
-
|
| 264 |
|
| 265 |
with gr.Blocks() as demo:
|
| 266 |
with gr.Tab("KaLM"):
|
|
|
|
| 96 |
else:
|
| 97 |
return model.encode(text, convert_to_tensor=True, normalize_embeddings=True, batch_size=batch_size)
|
| 98 |
|
| 99 |
+
def process_movies(model, embeddings_file, movie_embeddings, movies_queue, lock, model_name):
|
| 100 |
"""
|
| 101 |
Обрабатывает фильмы из очереди, создавая для них эмбеддинги.
|
| 102 |
"""
|
| 103 |
+
global processing_complete_kalm, processing_complete_bge # Добавлено
|
| 104 |
+
|
| 105 |
while True:
|
| 106 |
+
batch = []
|
| 107 |
+
while not movies_queue.empty() and len(batch) < batch_size:
|
| 108 |
+
try:
|
| 109 |
+
movie = movies_queue.get(timeout=1)
|
| 110 |
+
batch.append(movie)
|
| 111 |
+
except queue.Empty:
|
| 112 |
+
break
|
| 113 |
+
|
| 114 |
+
if not batch:
|
| 115 |
+
print(f"Очередь фильмов для {model_name} пуста.")
|
| 116 |
+
if model_name == model_name_kalm:
|
| 117 |
+
processing_complete_kalm = True
|
| 118 |
+
elif model_name == model_name_bge:
|
| 119 |
+
processing_complete_bge = True
|
| 120 |
+
break
|
| 121 |
+
|
| 122 |
+
titles = [movie["name"] for movie in batch]
|
| 123 |
+
embedding_strings = [
|
| 124 |
+
f"Название: {movie['name']}\nГод: {movie['year']}\nЖанры: {movie['genresList']}\nОписание: {movie['description']}"
|
| 125 |
+
for movie in batch
|
| 126 |
+
]
|
| 127 |
+
|
| 128 |
+
print(f"Создаются эмбеддинги для фильмов ({model_name}): {', '.join(titles)}...")
|
| 129 |
+
embeddings = model.encode(embedding_strings, convert_to_tensor=True, batch_size=batch_size, normalize_embeddings=True).tolist()
|
| 130 |
+
|
| 131 |
+
with lock:
|
| 132 |
+
for title, embedding in zip(titles, embeddings):
|
| 133 |
+
movie_embeddings[title] = embedding
|
| 134 |
+
# Сохраняем эмбеддинги в файл после обработки каждого пакета
|
| 135 |
+
with open(embeddings_file, "w", encoding="utf-8") as f:
|
| 136 |
+
json.dump(movie_embeddings, f, ensure_ascii=False, indent=4)
|
| 137 |
+
print(f"Эмбеддинги для фильмов ({model_name}): {', '.join(titles)} созданы и сохранены.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 138 |
|
| 139 |
print(f"Обработка фильмов для {model_name} завершена.")
|
| 140 |
|
|
|
|
| 157 |
print(f"Эмбеддинг для запроса '{query}' создан и сохранен.")
|
| 158 |
return embedding
|
| 159 |
|
| 160 |
+
def search_movies(query, model, movie_embeddings, movies_data, query_embeddings, query_embeddings_file, top_k=10, query_prompt=None):
|
| 161 |
"""
|
| 162 |
Ищет наиболее похожие фильмы по запросу с использова��ием инструкции.
|
| 163 |
|
|
|
|
| 167 |
movie_embeddings: Словарь с эмбеддингами фильмов.
|
| 168 |
movies_data: Данные о фильмах.
|
| 169 |
top_k: Количество возвращаемых результатов.
|
| 170 |
+
query_prompt: Инструкция для запроса (для KaLM).
|
| 171 |
|
| 172 |
Returns:
|
| 173 |
Строку с результатами поиска в формате HTML.
|
| 174 |
"""
|
| 175 |
+
global search_in_progress_kalm, search_in_progress_bge # Добавлено
|
| 176 |
+
|
| 177 |
+
if model == model_kalm:
|
| 178 |
search_in_progress_kalm = True
|
| 179 |
+
elif model == model_bge:
|
|
|
|
| 180 |
search_in_progress_bge = True
|
| 181 |
+
|
| 182 |
start_time = time.time()
|
| 183 |
print(f"\n\033[1mПоиск по запросу: '{query}'\033[0m")
|
| 184 |
|
| 185 |
print(f"Начало создания эмбеддинга для запроса: {time.strftime('%Y-%m-%d %H:%M:%S')}")
|
| 186 |
+
query_embedding_tensor = torch.tensor(get_query_embedding(query, model, query_embeddings, query_embeddings_file, prompt=query_prompt))
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
print(f"Окончание создания эмбеддинга для запроса: {time.strftime('%Y-%m-%d %H:%M:%S')}")
|
| 188 |
|
| 189 |
if model == model_kalm:
|
| 190 |
+
with movie_embeddings_lock_kalm:
|
| 191 |
+
current_movie_embeddings = movie_embeddings.copy()
|
| 192 |
elif model == model_bge:
|
| 193 |
+
with movie_embeddings_lock_bge:
|
| 194 |
+
current_movie_embeddings = movie_embeddings.copy()
|
| 195 |
|
| 196 |
if not current_movie_embeddings:
|
| 197 |
+
if model == model_kalm:
|
|
|
|
| 198 |
search_in_progress_kalm = False
|
| 199 |
+
elif model == model_bge:
|
| 200 |
search_in_progress_bge = False
|
| 201 |
+
return "<p>Пока что нет обработанных фильмов. Попробуйте позже.</p>"
|
| 202 |
|
| 203 |
# Преобразуем эмбеддинги фильмов в тензор
|
| 204 |
movie_titles = list(current_movie_embeddings.keys())
|
|
|
|
| 230 |
end_time = time.time()
|
| 231 |
execution_time = end_time - start_time
|
| 232 |
print(f"Поиск завершен за {execution_time:.4f} секунд.")
|
| 233 |
+
|
| 234 |
+
if model == model_kalm:
|
| 235 |
search_in_progress_kalm = False
|
| 236 |
+
elif model == model_bge:
|
| 237 |
search_in_progress_bge = False
|
| 238 |
+
|
| 239 |
return results_html
|
| 240 |
|
| 241 |
# Потоки для обработки фильмов
|
| 242 |
+
processing_thread_kalm = threading.Thread(target=process_movies, args=(model_kalm, embeddings_file_kalm, movie_embeddings_kalm, movies_queue_kalm, movie_embeddings_lock_kalm, model_name_kalm))
|
| 243 |
+
processing_thread_bge = threading.Thread(target=process_movies, args=(model_bge, embeddings_file_bge, movie_embeddings_bge, movies_queue_bge, movie_embeddings_lock_bge, model_name_bge))
|
| 244 |
|
| 245 |
# Запускаем потоки для обработки фильмов
|
| 246 |
processing_thread_kalm.start()
|
| 247 |
processing_thread_bge.start()
|
| 248 |
|
| 249 |
def search_with_kalm(query):
|
| 250 |
+
return search_movies(query, model_kalm, movie_embeddings_kalm, movies_data, query_embeddings_kalm, query_embeddings_file_kalm, top_k=10, query_prompt=query_prompt_kalm)
|
| 251 |
+
|
| 252 |
def search_with_bge(query):
|
| 253 |
+
return search_movies(query, model_bge, movie_embeddings_bge, movies_data, query_embeddings_bge, query_embeddings_file_bge, top_k=10)
|
| 254 |
|
| 255 |
with gr.Blocks() as demo:
|
| 256 |
with gr.Tab("KaLM"):
|