Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,7 +8,7 @@ from haystack.schema import Document
|
|
| 8 |
|
| 9 |
from typing import Optional, List
|
| 10 |
|
| 11 |
-
from huggingface_hub import get_inference_endpoint
|
| 12 |
from datasets import load_dataset
|
| 13 |
from time import perf_counter
|
| 14 |
import gradio as gr
|
|
@@ -16,18 +16,27 @@ import numpy as np
|
|
| 16 |
import requests
|
| 17 |
import os
|
| 18 |
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
RETRIEVER_URL = os.getenv("RETRIEVER_URL")
|
| 21 |
-
RANKER_URL = os.getenv("RANKER_URL")
|
| 22 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
RETRIEVER_IE
|
| 26 |
-
|
| 27 |
-
)
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
)
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
def post(url, payload):
|
|
@@ -137,10 +146,6 @@ class Ranker(BaseRanker):
|
|
| 137 |
return [[Document.from_dict(d) for d in docs] for docs in response]
|
| 138 |
|
| 139 |
|
| 140 |
-
TOP_K = 2
|
| 141 |
-
BATCH_SIZE = 16
|
| 142 |
-
|
| 143 |
-
|
| 144 |
if (
|
| 145 |
os.path.exists("/data/faiss_document_store.db")
|
| 146 |
and os.path.exists("/data/faiss_index.json")
|
|
@@ -152,21 +157,27 @@ if (
|
|
| 152 |
)
|
| 153 |
document_store.save(index_path="/data/faiss_index")
|
| 154 |
else:
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
document_store = FAISSDocumentStore(
|
| 163 |
sql_url="sqlite:////data/faiss_document_store.db",
|
| 164 |
return_embedding=True,
|
| 165 |
embedding_dim=384,
|
| 166 |
)
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
| 170 |
document_store.update_embeddings(retriever=retriever)
|
| 171 |
document_store.save(index_path="/data/faiss_index")
|
| 172 |
|
|
@@ -178,27 +189,9 @@ pipe.add_node(component=ranker, name="Ranker", inputs=["Retriever"])
|
|
| 178 |
|
| 179 |
|
| 180 |
def run(query: str) -> dict:
|
| 181 |
-
if RETRIEVER_IE.status != "running":
|
| 182 |
-
RETRIEVER_IE.resume()
|
| 183 |
-
raise gr.Error(
|
| 184 |
-
"Retriever Inference Endpoint is not running. "
|
| 185 |
-
"Sent a request to resume it. Please try again in a few minutes."
|
| 186 |
-
)
|
| 187 |
-
|
| 188 |
-
if RANKER_IE.status != "running":
|
| 189 |
-
RANKER_IE.resume()
|
| 190 |
-
raise gr.Error(
|
| 191 |
-
"Ranker Inference Endpoint is not running. "
|
| 192 |
-
"Sent a request to resume it. Please try again in a few minutes."
|
| 193 |
-
)
|
| 194 |
-
|
| 195 |
pipe_output = pipe.run(query=query)
|
| 196 |
|
| 197 |
-
output = f"""
|
| 198 |
-
<h2>Query</h2>
|
| 199 |
-
<p>{query}</p>
|
| 200 |
-
<h2>Top {TOP_K} Documents</h2>
|
| 201 |
-
"""
|
| 202 |
|
| 203 |
for i, doc in enumerate(pipe_output["documents"]):
|
| 204 |
output += f"""
|
|
@@ -221,23 +214,24 @@ examples = [
|
|
| 221 |
"How did Colossus of Rhodes collapse?",
|
| 222 |
]
|
| 223 |
|
| 224 |
-
|
| 225 |
input_text = gr.components.Textbox(
|
| 226 |
-
label="Query",
|
| 227 |
-
placeholder="Enter a query",
|
| 228 |
-
value=examples[0],
|
| 229 |
-
lines=3,
|
| 230 |
)
|
| 231 |
-
output_html = gr.components.HTML(label="
|
| 232 |
|
| 233 |
gr.Interface(
|
| 234 |
fn=run,
|
| 235 |
inputs=input_text,
|
| 236 |
outputs=output_html,
|
| 237 |
-
title="End-to-End Retrieval & Ranking",
|
| 238 |
examples=examples,
|
| 239 |
-
|
| 240 |
-
"
|
| 241 |
-
"
|
| 242 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
).launch()
|
|
|
|
| 8 |
|
| 9 |
from typing import Optional, List
|
| 10 |
|
| 11 |
+
# from huggingface_hub import get_inference_endpoint
|
| 12 |
from datasets import load_dataset
|
| 13 |
from time import perf_counter
|
| 14 |
import gradio as gr
|
|
|
|
| 16 |
import requests
|
| 17 |
import os
|
| 18 |
|
| 19 |
+
TOP_K = 2
|
| 20 |
+
BATCH_SIZE = 16
|
| 21 |
|
|
|
|
|
|
|
| 22 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 23 |
+
RANKER_URL = os.getenv("RANKER_URL")
|
| 24 |
+
RETRIEVER_URL = os.getenv("RETRIEVER_URL")
|
| 25 |
|
| 26 |
+
# RETRIEVER_IE = get_inference_endpoint(
|
| 27 |
+
# "fastrag-retriever", namespace="optimum-intel", token=HF_TOKEN
|
| 28 |
+
# )
|
| 29 |
+
# RANKER_IE = get_inference_endpoint(
|
| 30 |
+
# "fastrag-ranker", namespace="optimum-intel", token=HF_TOKEN
|
| 31 |
+
# )
|
| 32 |
|
| 33 |
+
# if RETRIEVER_IE.status != "running":
|
| 34 |
+
# RETRIEVER_IE.resume()
|
| 35 |
+
# RETRIEVER_IE.wait()
|
| 36 |
+
|
| 37 |
+
# if RANKER_IE.status != "running":
|
| 38 |
+
# RANKER_IE.resume()
|
| 39 |
+
# RANKER_IE.wait()
|
| 40 |
|
| 41 |
|
| 42 |
def post(url, payload):
|
|
|
|
| 146 |
return [[Document.from_dict(d) for d in docs] for docs in response]
|
| 147 |
|
| 148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
if (
|
| 150 |
os.path.exists("/data/faiss_document_store.db")
|
| 151 |
and os.path.exists("/data/faiss_index.json")
|
|
|
|
| 157 |
)
|
| 158 |
document_store.save(index_path="/data/faiss_index")
|
| 159 |
else:
|
| 160 |
+
for file in [
|
| 161 |
+
"/data/faiss_document_store.db",
|
| 162 |
+
"/data/faiss_index.json",
|
| 163 |
+
"/data/faiss_index",
|
| 164 |
+
]:
|
| 165 |
+
try:
|
| 166 |
+
os.remove(file)
|
| 167 |
+
except FileNotFoundError:
|
| 168 |
+
pass
|
| 169 |
|
| 170 |
document_store = FAISSDocumentStore(
|
| 171 |
sql_url="sqlite:////data/faiss_document_store.db",
|
| 172 |
return_embedding=True,
|
| 173 |
embedding_dim=384,
|
| 174 |
)
|
| 175 |
+
document_store.write_documents(
|
| 176 |
+
load_dataset("bilgeyucel/seven-wonders", split="train")
|
| 177 |
+
)
|
| 178 |
+
retriever = Retriever(
|
| 179 |
+
document_store=document_store, top_k=TOP_K, batch_size=BATCH_SIZE
|
| 180 |
+
)
|
| 181 |
document_store.update_embeddings(retriever=retriever)
|
| 182 |
document_store.save(index_path="/data/faiss_index")
|
| 183 |
|
|
|
|
| 189 |
|
| 190 |
|
| 191 |
def run(query: str) -> dict:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 192 |
pipe_output = pipe.run(query=query)
|
| 193 |
|
| 194 |
+
output = f"""<h2>Top {TOP_K} Documents</h2>"""
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
|
| 196 |
for i, doc in enumerate(pipe_output["documents"]):
|
| 197 |
output += f"""
|
|
|
|
| 214 |
"How did Colossus of Rhodes collapse?",
|
| 215 |
]
|
| 216 |
|
|
|
|
| 217 |
input_text = gr.components.Textbox(
|
| 218 |
+
label="Query", placeholder="Enter a query", value=examples[0], lines=1
|
|
|
|
|
|
|
|
|
|
| 219 |
)
|
| 220 |
+
output_html = gr.components.HTML(label="Documents")
|
| 221 |
|
| 222 |
gr.Interface(
|
| 223 |
fn=run,
|
| 224 |
inputs=input_text,
|
| 225 |
outputs=output_html,
|
|
|
|
| 226 |
examples=examples,
|
| 227 |
+
cache_examples=False,
|
| 228 |
+
allow_flagging="never",
|
| 229 |
+
title="End-to-End Retrieval & Ranking with Hugging Face Inference Endpoints and Spaces",
|
| 230 |
+
description="""## A [haystack](https://haystack.deepset.ai/) pipeline with the following components
|
| 231 |
+
- <strong>Retriever</strong>: [Quantized FastRAG Retriever](https://huggingface.co/optimum-intel/fastrag-retriever) deployed on [Inference Endpoints](https://huggingface.co/docs/inference-endpoints/index) + Intel Sapphire Rapids CPU.
|
| 232 |
+
- <strong>Ranker</strong>: [Quantized FastRAG Retriever](https://huggingface.co/optimum-intel/fastrag-ranker) deployed on [Inference Endpoints](https://huggingface.co/docs/inference-endpoints/index) + Intel Sapphire Rapids CPU.
|
| 233 |
+
- <strong>Document Store</strong>: A [FAISS document store](https://github.com/facebookresearch/faiss/tree/main) containing the [`seven-wonders` dataset](https://huggingface.co/datasets/bilgeyucel/seven-wonders), created on this Space's [persistent storage](https://huggingface.co/docs/hub/en/spaces-storage).
|
| 234 |
+
|
| 235 |
+
This Space is based on the optimizations demonstrated in the blog [CPU Optimized Embeddings with π€ Optimum Intel and fastRAG](https://huggingface.co/blog/intel-fast-embedding)
|
| 236 |
+
""",
|
| 237 |
).launch()
|