orionweller's picture
Update app.py
953db17 verified
raw
history blame contribute delete
12.4 kB
import gradio as gr
import pickle
import numpy as np
import glob
import tqdm
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, set_seed
from peft import PeftModel
import logging
import os
import json
import spaces
import ir_datasets
import pytrec_eval
from huggingface_hub import login
import transformers
import peft
import faiss
import sys
from collections import defaultdict
set_seed(42)
# Set up logging
# Set up logging with time printing
logging.basicConfig(
format='%(asctime)s %(levelname)-8s %(message)s',
level=logging.INFO,
datefmt='%Y-%m-%d %H:%M:%S')
logger = logging.getLogger(__name__)
# Authenticate with HF_TOKEN
login(token=os.environ['HF_TOKEN'])
# Global variables
CUR_MODEL = "Samaya-AI/Promptriever-Llama2-v1"
BASE_MODEL = "meta-llama/Llama-2-7b-hf"
tokenizer = None
model = None
retrievers = {}
corpus_lookups = {}
queries = {}
q_lookups = {}
qrels = {}
query2qid = {}
datasets = ["scifact"]
current_dataset = "scifact"
faiss_index = None
def log_system_info():
logger.info("System Information:")
logger.info(f"Python version: {sys.version}")
logger.info("\nPackage Versions:")
logger.info(f"torch: {torch.__version__}")
logger.info(f"transformers: {transformers.__version__}")
logger.info(f"peft: {peft.__version__}")
logger.info(f"faiss: {faiss.__version__}")
logger.info(f"gradio: {gr.__version__}")
logger.info(f"ir_datasets: {ir_datasets.__version__}")
if torch.cuda.is_available():
logger.info(f"\nCUDA Information:")
logger.info(f"CUDA available: Yes")
logger.info(f"CUDA version: {torch.version.cuda}")
logger.info(f"cuDNN version: {torch.backends.cudnn.version()}")
logger.info(f"Number of GPUs: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}")
else:
logger.info("\nCUDA Information:")
logger.info("CUDA available: No")
log_system_info()
def pool(last_hidden_states, attention_mask, pool_type="last"):
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
if pool_type == "last":
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
emb = last_hidden[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden.shape[0]
emb = last_hidden[torch.arange(batch_size, device=last_hidden.device), sequence_lengths]
else:
raise ValueError(f"pool_type {pool_type} not supported")
return emb
def create_batch_dict(tokenizer, input_texts, always_add_eos="last", max_length=512):
batch_dict = tokenizer(
input_texts,
max_length=max_length - 1,
return_token_type_ids=False,
return_attention_mask=False,
padding=False,
truncation=True
)
if always_add_eos == "last":
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
return tokenizer.pad(
batch_dict,
padding=True,
pad_to_multiple_of=8,
return_attention_mask=True,
return_tensors="pt",
)
class RepLlamaModel:
def __init__(self, model_name_or_path):
self.base_model = "meta-llama/Llama-2-7b-hf"
self.tokenizer = AutoTokenizer.from_pretrained(self.base_model)
self.tokenizer.model_max_length = 2048
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
self.tokenizer.pad_token = self.tokenizer.eos_token
self.tokenizer.padding_side = "right"
self.model = self.get_model(model_name_or_path)
self.model.config.max_length = 2048
def get_model(self, peft_model_name):
base_model = AutoModel.from_pretrained(self.base_model)
model = PeftModel.from_pretrained(base_model, peft_model_name)
model = model.merge_and_unload()
model.eval()
return model
def encode(self, texts, batch_size=48, **kwargs):
# if model is not on cuda, put it there
if self.model.device.type != "cuda":
self.model = self.model.cuda()
all_embeddings = []
for i in tqdm.tqdm(range(0, len(texts), batch_size)):
batch_texts = texts[i:i+batch_size]
batch_dict = create_batch_dict(self.tokenizer, batch_texts, always_add_eos="last")
batch_dict = {key: value.cuda() for key, value in batch_dict.items()}
with torch.cuda.amp.autocast():
with torch.no_grad():
outputs = self.model(**batch_dict)
embeddings = pool(outputs.last_hidden_state, batch_dict['attention_mask'], 'last')
embeddings = F.normalize(embeddings, p=2, dim=-1)
logger.info(f"Encoded shape: {embeddings.shape}, Norm of first embedding: {torch.norm(embeddings[0]).item()}")
all_embeddings.append(embeddings.cpu().numpy())
# self.model = self.model.cpu()
return np.concatenate(all_embeddings, axis=0)
def load_corpus_embeddings(dataset_name):
corpus_path = f"{dataset_name}/corpus_emb.*.pkl"
index_files = glob.glob(corpus_path)
index_files.sort(key=lambda x: int(x.split('.')[-2]))
all_embeddings = []
corpus_lookups = []
for file in index_files:
with open(file, 'rb') as f:
embeddings, p_lookup = pickle.load(f)
all_embeddings.append(embeddings)
corpus_lookups.extend(p_lookup)
all_embeddings = np.concatenate(all_embeddings, axis=0)
logger.info(f"Loaded corpus embeddings for {dataset_name}. Shape: {all_embeddings.shape}")
return all_embeddings, corpus_lookups
def create_faiss_index(embeddings):
dimension = embeddings.shape[1]
index = faiss.IndexFlatIP(dimension)
index.add(embeddings)
logger.info(f"Created FAISS index with {index.ntotal} vectors of dimension {dimension}")
return index
def load_or_create_faiss_index(dataset_name):
embeddings, corpus_lookups = load_corpus_embeddings(dataset_name)
index = create_faiss_index(embeddings)
return index, corpus_lookups
def initialize_faiss_and_corpus(dataset_name):
global corpus_lookups
index, corpus_lookups[dataset_name] = load_or_create_faiss_index(dataset_name)
logger.info(f"Initialized FAISS index and corpus lookups for {dataset_name}")
return index
def search_queries(dataset_name, q_reps, depth=100):
global faiss_index
logger.info(f"Searching queries. Shape of q_reps: {q_reps.shape}")
# Perform the search
all_scores, all_indices = faiss_index.search(q_reps, depth)
logger.info(f"Search completed. Shape of all_scores: {all_scores.shape}, all_indices: {all_indices.shape}")
logger.info(f"Sample scores: {all_scores[0][:5]}, Sample indices: {all_indices[0][:5]}")
psg_indices = [[str(corpus_lookups[dataset_name][x]) for x in q_dd] for q_dd in all_indices]
return all_scores, np.array(psg_indices)
def load_queries(dataset_name):
global queries, q_lookups, qrels, query2qid
dataset = ir_datasets.load(f"beir/{dataset_name.lower()}" + ("/test" if dataset_name == "scifact" else ""))
queries[dataset_name] = []
query2qid[dataset_name] = defaultdict(dict)
q_lookups[dataset_name] = {}
qrels[dataset_name] = {}
for query in dataset.queries_iter():
queries[dataset_name].append(query.text)
q_lookups[dataset_name][query.query_id] = query.text
query2qid[dataset_name][query.text] = query.query_id
for qrel in dataset.qrels_iter():
if qrel.query_id not in qrels[dataset_name]:
qrels[dataset_name][qrel.query_id] = {}
qrels[dataset_name][qrel.query_id][qrel.doc_id] = qrel.relevance
logger.info(f"Loaded queries for {dataset_name}. Total queries: {len(queries[dataset_name])}")
logger.info(f"Loaded qrels for {dataset_name}. Total query IDs: {len(qrels[dataset_name])}")
def evaluate(qrels, results, k_values):
qrels = {str(k): {str(k2): v2 for k2, v2 in v.items()} for k, v in qrels.items()}
results = {str(k): {str(k2): v2 for k2, v2 in v.items()} for k, v in results.items()}
evaluator = pytrec_eval.RelevanceEvaluator(
qrels, {f"ndcg_cut.{k}" for k in k_values} | {f"recall.{k}" for k in k_values}
)
scores = evaluator.evaluate(results)
metrics = {}
for k in k_values:
ndcg_scores = [query_scores[f"ndcg_cut_{k}"] for query_scores in scores.values()]
recall_scores = [query_scores[f"recall_{k}"] for query_scores in scores.values()]
metrics[f"NDCG@{k}"] = round(np.mean(ndcg_scores), 3)
metrics[f"Recall@{k}"] = round(np.mean(recall_scores), 3)
logger.info(f"NDCG@{k}: mean={metrics[f'NDCG@{k}']}, min={min(ndcg_scores)}, max={max(ndcg_scores)}")
logger.info(f"Recall@{k}: mean={metrics[f'Recall@{k}']}, min={min(recall_scores)}, max={max(recall_scores)}")
# delete nDCG@100 and Recall@10
del metrics["NDCG@100"]
del metrics["Recall@100"]
return metrics
@spaces.GPU
def run_evaluation(dataset, postfix):
global current_dataset, queries, model, query2qid
current_dataset = dataset
input_texts = [f"query: {query.strip()} {postfix}".strip() for query in queries[current_dataset]]
logger.info(f"Number of input texts: {len(input_texts)}")
logger.info(f"Sample input text: {input_texts[0]}")
q_reps = model.encode(input_texts)
logger.info(f"Encoded query first five: {q_reps[0][:5]}")
logger.info(f"Encoded query representations shape: {q_reps.shape}")
all_scores, psg_indices = search_queries(dataset, q_reps)
results = {}
logging.info(f"Number of queries in q_lookups: {len(q_lookups[dataset])}")
logging.info("Size of all_scores: " + str(len(all_scores)))
logging.info("Size of psg_indices: " + str(len(psg_indices)))
for query, scores, doc_ids in zip(queries[current_dataset], all_scores, psg_indices):
qid = query2qid[dataset][query]
qid_str = str(qid)
results[qid_str] = {}
for doc_id, score in zip(doc_ids, scores):
doc_id_str = str(doc_id)
results[qid_str][doc_id_str] = float(score)
if not results[qid_str]: # If no results for this query
logger.warning(f"No results for query {qid_str}")
logger.info(f"Number of queries in results: {len(results)}")
logger.info(f"Sample result: {next(iter(results.items()))}")
qrels[dataset] = {str(qid): {str(doc_id): rel for doc_id, rel in rels.items()}
for qid, rels in qrels[dataset].items()}
logger.info(f"Number of results: {len(results)}")
logger.info(f"Sample result: {list(results.items())[0]}")
logger.info(f"Number of queries in qrels: {len(qrels[dataset])}")
logger.info(f"Sample qrel: {list(qrels[dataset].items())[0]}")
logger.info(f"Number of queries in results: {len(results)}")
logger.info(f"Sample result: {list(results.items())[0]}")
# Check for mismatches
qrels_keys = set(qrels[dataset].keys())
results_keys = set(results.keys())
logger.info(f"Queries in qrels but not in results: {qrels_keys - results_keys}")
logger.info(f"Queries in results but not in qrels: {results_keys - qrels_keys}")
metrics = evaluate(qrels[dataset], results, k_values=[10, 100])
return metrics
@spaces.GPU
def gradio_interface(dataset, postfix):
return run_evaluation(dataset, postfix)
if model is None:
model = RepLlamaModel(model_name_or_path=CUR_MODEL)
load_queries(current_dataset)
faiss_index = initialize_faiss_and_corpus(current_dataset)
# Create Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Dropdown(choices=datasets, label="Dataset", value="scifact"),
gr.Textbox(label="Prompt")
],
outputs=gr.JSON(label="Evaluation Results"),
title="Promptriever Demo",
description="Enter a prompt to evaluate the model's performance on SciFact. Note: it takes between **10-30 seconds** to evaluate.",
examples=[
["scifact", ""],
["scifact", "Think carefully about these conditions when determining relevance"]
],
cache_examples=False,
)
# Launch the interface
iface.launch(share=False)