Delete tools/restaurants/test.ipynb
Browse files- tools/restaurants/test.ipynb +0 -1152
tools/restaurants/test.ipynb
DELETED
|
@@ -1,1152 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": 50,
|
| 6 |
-
"id": "1f939e73",
|
| 7 |
-
"metadata": {},
|
| 8 |
-
"outputs": [],
|
| 9 |
-
"source": [
|
| 10 |
-
"import pandas as pd\n",
|
| 11 |
-
"data = pd.read_csv('/home/xj/toolAugEnv/code/toolConstraint/database/restaurants/zomato.csv')"
|
| 12 |
-
]
|
| 13 |
-
},
|
| 14 |
-
{
|
| 15 |
-
"cell_type": "code",
|
| 16 |
-
"execution_count": 51,
|
| 17 |
-
"id": "876e4fff",
|
| 18 |
-
"metadata": {},
|
| 19 |
-
"outputs": [],
|
| 20 |
-
"source": [
|
| 21 |
-
"data_dict = data.to_dict(orient = 'split')"
|
| 22 |
-
]
|
| 23 |
-
},
|
| 24 |
-
{
|
| 25 |
-
"cell_type": "code",
|
| 26 |
-
"execution_count": 52,
|
| 27 |
-
"id": "dbaee06c",
|
| 28 |
-
"metadata": {},
|
| 29 |
-
"outputs": [
|
| 30 |
-
{
|
| 31 |
-
"data": {
|
| 32 |
-
"text/plain": [
|
| 33 |
-
"['Restaurant ID',\n",
|
| 34 |
-
" 'Restaurant Name',\n",
|
| 35 |
-
" 'Country Code',\n",
|
| 36 |
-
" 'City',\n",
|
| 37 |
-
" 'Address',\n",
|
| 38 |
-
" 'Locality',\n",
|
| 39 |
-
" 'Locality Verbose',\n",
|
| 40 |
-
" 'Longitude',\n",
|
| 41 |
-
" 'Latitude',\n",
|
| 42 |
-
" 'Cuisines',\n",
|
| 43 |
-
" 'Average Cost for two',\n",
|
| 44 |
-
" 'Currency',\n",
|
| 45 |
-
" 'Has Table booking',\n",
|
| 46 |
-
" 'Has Online delivery',\n",
|
| 47 |
-
" 'Is delivering now',\n",
|
| 48 |
-
" 'Switch to order menu',\n",
|
| 49 |
-
" 'Price range',\n",
|
| 50 |
-
" 'Aggregate rating',\n",
|
| 51 |
-
" 'Rating color',\n",
|
| 52 |
-
" 'Rating text',\n",
|
| 53 |
-
" 'Votes']"
|
| 54 |
-
]
|
| 55 |
-
},
|
| 56 |
-
"execution_count": 52,
|
| 57 |
-
"metadata": {},
|
| 58 |
-
"output_type": "execute_result"
|
| 59 |
-
}
|
| 60 |
-
],
|
| 61 |
-
"source": [
|
| 62 |
-
"data_dict['columns']"
|
| 63 |
-
]
|
| 64 |
-
},
|
| 65 |
-
{
|
| 66 |
-
"cell_type": "code",
|
| 67 |
-
"execution_count": 53,
|
| 68 |
-
"id": "cb540128",
|
| 69 |
-
"metadata": {},
|
| 70 |
-
"outputs": [
|
| 71 |
-
{
|
| 72 |
-
"data": {
|
| 73 |
-
"text/plain": [
|
| 74 |
-
"9551"
|
| 75 |
-
]
|
| 76 |
-
},
|
| 77 |
-
"execution_count": 53,
|
| 78 |
-
"metadata": {},
|
| 79 |
-
"output_type": "execute_result"
|
| 80 |
-
}
|
| 81 |
-
],
|
| 82 |
-
"source": [
|
| 83 |
-
"len(data_dict['data'])"
|
| 84 |
-
]
|
| 85 |
-
},
|
| 86 |
-
{
|
| 87 |
-
"cell_type": "code",
|
| 88 |
-
"execution_count": 14,
|
| 89 |
-
"id": "ea9858c5",
|
| 90 |
-
"metadata": {},
|
| 91 |
-
"outputs": [
|
| 92 |
-
{
|
| 93 |
-
"data": {
|
| 94 |
-
"text/plain": [
|
| 95 |
-
"[6600970,\n",
|
| 96 |
-
" 'Pizza 礞 Bessa',\n",
|
| 97 |
-
" 30,\n",
|
| 98 |
-
" 'Bras韄lia',\n",
|
| 99 |
-
" 'SCS 214, Bloco C, Loja 40, Asa Sul, Bras韄lia',\n",
|
| 100 |
-
" 'Asa Sul',\n",
|
| 101 |
-
" 'Asa Sul, Bras韄lia',\n",
|
| 102 |
-
" -47.91566667,\n",
|
| 103 |
-
" -15.83116667,\n",
|
| 104 |
-
" 'Pizza',\n",
|
| 105 |
-
" 50,\n",
|
| 106 |
-
" 'Brazilian Real(R$)',\n",
|
| 107 |
-
" 'No',\n",
|
| 108 |
-
" 'No',\n",
|
| 109 |
-
" 'No',\n",
|
| 110 |
-
" 'No',\n",
|
| 111 |
-
" 2,\n",
|
| 112 |
-
" 3.2,\n",
|
| 113 |
-
" 'Orange',\n",
|
| 114 |
-
" 'Average',\n",
|
| 115 |
-
" 11]"
|
| 116 |
-
]
|
| 117 |
-
},
|
| 118 |
-
"execution_count": 14,
|
| 119 |
-
"metadata": {},
|
| 120 |
-
"output_type": "execute_result"
|
| 121 |
-
}
|
| 122 |
-
],
|
| 123 |
-
"source": [
|
| 124 |
-
"data_dict['data'][26]"
|
| 125 |
-
]
|
| 126 |
-
},
|
| 127 |
-
{
|
| 128 |
-
"cell_type": "code",
|
| 129 |
-
"execution_count": 9,
|
| 130 |
-
"id": "e21af5d1",
|
| 131 |
-
"metadata": {},
|
| 132 |
-
"outputs": [],
|
| 133 |
-
"source": [
|
| 134 |
-
"flight = pd.read_csv('/home/xj/toolAugEnv/code/toolConstraint/database/flights/clean_Flights_2022.csv')"
|
| 135 |
-
]
|
| 136 |
-
},
|
| 137 |
-
{
|
| 138 |
-
"cell_type": "code",
|
| 139 |
-
"execution_count": 10,
|
| 140 |
-
"id": "966feef9",
|
| 141 |
-
"metadata": {},
|
| 142 |
-
"outputs": [],
|
| 143 |
-
"source": [
|
| 144 |
-
"flight = flight.to_dict(orient = 'split')"
|
| 145 |
-
]
|
| 146 |
-
},
|
| 147 |
-
{
|
| 148 |
-
"cell_type": "code",
|
| 149 |
-
"execution_count": 93,
|
| 150 |
-
"id": "c5f81f43",
|
| 151 |
-
"metadata": {},
|
| 152 |
-
"outputs": [],
|
| 153 |
-
"source": [
|
| 154 |
-
"city_set = open('/home/xj/toolAugEnv/code/toolConstraint/database/background/citySet.txt','r').read().strip().split('\\n')"
|
| 155 |
-
]
|
| 156 |
-
},
|
| 157 |
-
{
|
| 158 |
-
"cell_type": "code",
|
| 159 |
-
"execution_count": 94,
|
| 160 |
-
"id": "bfce5f56",
|
| 161 |
-
"metadata": {},
|
| 162 |
-
"outputs": [
|
| 163 |
-
{
|
| 164 |
-
"data": {
|
| 165 |
-
"text/plain": [
|
| 166 |
-
"['San Diego',\n",
|
| 167 |
-
" 'Pellston',\n",
|
| 168 |
-
" 'Buffalo',\n",
|
| 169 |
-
" 'Charlotte Amalie',\n",
|
| 170 |
-
" 'Flagstaff',\n",
|
| 171 |
-
" 'Evansville',\n",
|
| 172 |
-
" 'Hilo',\n",
|
| 173 |
-
" 'Twin Falls',\n",
|
| 174 |
-
" 'Newark',\n",
|
| 175 |
-
" 'State College',\n",
|
| 176 |
-
" 'Johnstown',\n",
|
| 177 |
-
" 'Charleston',\n",
|
| 178 |
-
" 'Montgomery',\n",
|
| 179 |
-
" 'Redding',\n",
|
| 180 |
-
" 'Lynchburg',\n",
|
| 181 |
-
" 'South Bend',\n",
|
| 182 |
-
" 'Sarasota',\n",
|
| 183 |
-
" 'Sioux Falls',\n",
|
| 184 |
-
" 'Paducah',\n",
|
| 185 |
-
" 'Kahului',\n",
|
| 186 |
-
" 'Atlantic City',\n",
|
| 187 |
-
" 'Bemidji',\n",
|
| 188 |
-
" 'Toledo',\n",
|
| 189 |
-
" 'Abilene',\n",
|
| 190 |
-
" 'Sacramento',\n",
|
| 191 |
-
" 'Amarillo',\n",
|
| 192 |
-
" 'Moline',\n",
|
| 193 |
-
" 'Hilton Head',\n",
|
| 194 |
-
" 'Manhattan',\n",
|
| 195 |
-
" 'Minneapolis',\n",
|
| 196 |
-
" 'Fort Myers',\n",
|
| 197 |
-
" 'Roswell',\n",
|
| 198 |
-
" 'Harlingen',\n",
|
| 199 |
-
" 'Seattle',\n",
|
| 200 |
-
" 'Manchester',\n",
|
| 201 |
-
" 'Gulfport',\n",
|
| 202 |
-
" 'Gainesville',\n",
|
| 203 |
-
" 'Pago Pago',\n",
|
| 204 |
-
" 'Wrangell',\n",
|
| 205 |
-
" 'Augusta',\n",
|
| 206 |
-
" 'Waterloo',\n",
|
| 207 |
-
" 'Yuma',\n",
|
| 208 |
-
" 'Saipan',\n",
|
| 209 |
-
" 'Christiansted',\n",
|
| 210 |
-
" 'North Bend',\n",
|
| 211 |
-
" 'Richmond',\n",
|
| 212 |
-
" 'Albuquerque',\n",
|
| 213 |
-
" 'Nashville',\n",
|
| 214 |
-
" 'Aberdeen',\n",
|
| 215 |
-
" 'Harrisburg',\n",
|
| 216 |
-
" 'Fort Wayne',\n",
|
| 217 |
-
" 'Green Bay',\n",
|
| 218 |
-
" 'Wenatchee',\n",
|
| 219 |
-
" 'Santa Fe',\n",
|
| 220 |
-
" 'St. Petersburg',\n",
|
| 221 |
-
" 'Belleville',\n",
|
| 222 |
-
" 'Greensboro',\n",
|
| 223 |
-
" 'Lake Charles',\n",
|
| 224 |
-
" 'Traverse City',\n",
|
| 225 |
-
" 'Erie',\n",
|
| 226 |
-
" 'Niagara Falls',\n",
|
| 227 |
-
" 'Pocatello',\n",
|
| 228 |
-
" 'Idaho Falls',\n",
|
| 229 |
-
" 'Alpena',\n",
|
| 230 |
-
" 'Wilmington',\n",
|
| 231 |
-
" 'Ontario',\n",
|
| 232 |
-
" 'Iron Mountain',\n",
|
| 233 |
-
" 'Lubbock',\n",
|
| 234 |
-
" 'Helena',\n",
|
| 235 |
-
" 'Kalamazoo',\n",
|
| 236 |
-
" 'Cleveland',\n",
|
| 237 |
-
" 'Grand Island',\n",
|
| 238 |
-
" 'Bishop',\n",
|
| 239 |
-
" 'New Bern',\n",
|
| 240 |
-
" 'Melbourne',\n",
|
| 241 |
-
" 'Bristol',\n",
|
| 242 |
-
" 'Orlando',\n",
|
| 243 |
-
" 'Bismarck',\n",
|
| 244 |
-
" 'Fresno',\n",
|
| 245 |
-
" 'Billings',\n",
|
| 246 |
-
" 'Jackson',\n",
|
| 247 |
-
" 'Daytona Beach',\n",
|
| 248 |
-
" 'College Station',\n",
|
| 249 |
-
" 'Jacksonville',\n",
|
| 250 |
-
" 'Salt Lake City',\n",
|
| 251 |
-
" 'Corpus Christi',\n",
|
| 252 |
-
" 'Florence',\n",
|
| 253 |
-
" 'Moab',\n",
|
| 254 |
-
" 'Grand Forks',\n",
|
| 255 |
-
" 'Las Vegas',\n",
|
| 256 |
-
" 'Fairbanks',\n",
|
| 257 |
-
" 'Petersburg',\n",
|
| 258 |
-
" 'Wichita',\n",
|
| 259 |
-
" 'Rhinelander',\n",
|
| 260 |
-
" 'Kansas City',\n",
|
| 261 |
-
" 'Dothan',\n",
|
| 262 |
-
" 'Alamosa',\n",
|
| 263 |
-
" 'Adak Island',\n",
|
| 264 |
-
" 'Islip',\n",
|
| 265 |
-
" 'Wichita Falls',\n",
|
| 266 |
-
" 'Presque Isle',\n",
|
| 267 |
-
" 'San Luis Obispo',\n",
|
| 268 |
-
" 'Dayton',\n",
|
| 269 |
-
" 'Brunswick',\n",
|
| 270 |
-
" 'Fort Smith',\n",
|
| 271 |
-
" \"Martha's Vineyard\",\n",
|
| 272 |
-
" 'Portland',\n",
|
| 273 |
-
" 'Waco',\n",
|
| 274 |
-
" 'New York',\n",
|
| 275 |
-
" 'Columbus',\n",
|
| 276 |
-
" 'Tampa',\n",
|
| 277 |
-
" 'Dallas',\n",
|
| 278 |
-
" 'Little Rock',\n",
|
| 279 |
-
" 'Kona',\n",
|
| 280 |
-
" 'Clarksburg',\n",
|
| 281 |
-
" 'San Angelo',\n",
|
| 282 |
-
" 'Saginaw',\n",
|
| 283 |
-
" 'Houston',\n",
|
| 284 |
-
" 'Duluth',\n",
|
| 285 |
-
" 'Valparaiso',\n",
|
| 286 |
-
" 'Phoenix',\n",
|
| 287 |
-
" 'Oakland',\n",
|
| 288 |
-
" 'Watertown',\n",
|
| 289 |
-
" 'Ogden',\n",
|
| 290 |
-
" 'Cedar Rapids',\n",
|
| 291 |
-
" 'Cape Girardeau',\n",
|
| 292 |
-
" 'Sun Valley',\n",
|
| 293 |
-
" 'Sault Ste. Marie',\n",
|
| 294 |
-
" 'Trenton',\n",
|
| 295 |
-
" 'Missoula',\n",
|
| 296 |
-
" 'Pasco',\n",
|
| 297 |
-
" 'Brainerd',\n",
|
| 298 |
-
" 'Newburgh',\n",
|
| 299 |
-
" 'Gustavus',\n",
|
| 300 |
-
" 'Branson',\n",
|
| 301 |
-
" 'Providence',\n",
|
| 302 |
-
" 'Minot',\n",
|
| 303 |
-
" 'Huntsville',\n",
|
| 304 |
-
" 'San Antonio',\n",
|
| 305 |
-
" 'Marquette',\n",
|
| 306 |
-
" 'Owensboro',\n",
|
| 307 |
-
" 'Del Rio',\n",
|
| 308 |
-
" 'Portsmouth',\n",
|
| 309 |
-
" 'Bloomington',\n",
|
| 310 |
-
" 'Lexington',\n",
|
| 311 |
-
" 'Santa Barbara',\n",
|
| 312 |
-
" 'Baltimore',\n",
|
| 313 |
-
" 'Panama City',\n",
|
| 314 |
-
" 'Kodiak',\n",
|
| 315 |
-
" 'Jacksonville',\n",
|
| 316 |
-
" 'Yakima',\n",
|
| 317 |
-
" 'Vernal',\n",
|
| 318 |
-
" 'Salisbury',\n",
|
| 319 |
-
" 'Mission',\n",
|
| 320 |
-
" 'Newport News',\n",
|
| 321 |
-
" 'Charlottesville',\n",
|
| 322 |
-
" 'Grand Junction',\n",
|
| 323 |
-
" 'Baton Rouge',\n",
|
| 324 |
-
" 'Beaumont',\n",
|
| 325 |
-
" 'Staunton',\n",
|
| 326 |
-
" 'Kalispell',\n",
|
| 327 |
-
" 'Key West',\n",
|
| 328 |
-
" 'Worcester',\n",
|
| 329 |
-
" 'West Palm Beach',\n",
|
| 330 |
-
" 'Boise',\n",
|
| 331 |
-
" 'Grand Rapids',\n",
|
| 332 |
-
" 'Salina',\n",
|
| 333 |
-
" 'Fort Leonard Wood',\n",
|
| 334 |
-
" 'Walla Walla',\n",
|
| 335 |
-
" 'Everett',\n",
|
| 336 |
-
" 'Dillingham',\n",
|
| 337 |
-
" 'Bellingham',\n",
|
| 338 |
-
" 'Lansing',\n",
|
| 339 |
-
" 'Madison',\n",
|
| 340 |
-
" 'Victoria',\n",
|
| 341 |
-
" 'Sioux City',\n",
|
| 342 |
-
" 'Hattiesburg',\n",
|
| 343 |
-
" 'Stockton',\n",
|
| 344 |
-
" 'Anchorage',\n",
|
| 345 |
-
" 'Charlotte',\n",
|
| 346 |
-
" 'Jamestown',\n",
|
| 347 |
-
" 'Laramie',\n",
|
| 348 |
-
" 'Decatur',\n",
|
| 349 |
-
" 'Durango',\n",
|
| 350 |
-
" 'Longview',\n",
|
| 351 |
-
" 'Syracuse',\n",
|
| 352 |
-
" 'St. Cloud',\n",
|
| 353 |
-
" 'Santa Rosa',\n",
|
| 354 |
-
" 'Bakersfield',\n",
|
| 355 |
-
" 'North Platte',\n",
|
| 356 |
-
" 'La Crosse',\n",
|
| 357 |
-
" 'Plattsburgh',\n",
|
| 358 |
-
" 'Concord',\n",
|
| 359 |
-
" 'Atlanta',\n",
|
| 360 |
-
" 'Provo',\n",
|
| 361 |
-
" 'Ogdensburg',\n",
|
| 362 |
-
" 'Ithaca',\n",
|
| 363 |
-
" 'Colorado Springs',\n",
|
| 364 |
-
" 'Washington',\n",
|
| 365 |
-
" 'Williston',\n",
|
| 366 |
-
" 'Tulsa',\n",
|
| 367 |
-
" 'Midland',\n",
|
| 368 |
-
" 'Champaign',\n",
|
| 369 |
-
" 'Devils Lake',\n",
|
| 370 |
-
" 'Greer',\n",
|
| 371 |
-
" 'Muskegon',\n",
|
| 372 |
-
" 'Hibbing',\n",
|
| 373 |
-
" 'Santa Ana',\n",
|
| 374 |
-
" 'Ponce',\n",
|
| 375 |
-
" 'Prescott',\n",
|
| 376 |
-
" 'Indianapolis',\n",
|
| 377 |
-
" 'International Falls',\n",
|
| 378 |
-
" 'Rapid City',\n",
|
| 379 |
-
" 'Ketchikan',\n",
|
| 380 |
-
" 'St. Louis',\n",
|
| 381 |
-
" 'Santa Maria',\n",
|
| 382 |
-
" 'Elmira',\n",
|
| 383 |
-
" 'Alexandria',\n",
|
| 384 |
-
" 'San Jose',\n",
|
| 385 |
-
" 'Tucson',\n",
|
| 386 |
-
" 'San Juan',\n",
|
| 387 |
-
" 'Dubuque',\n",
|
| 388 |
-
" 'Burbank',\n",
|
| 389 |
-
" 'Gunnison',\n",
|
| 390 |
-
" 'Cedar City',\n",
|
| 391 |
-
" 'Hyannis',\n",
|
| 392 |
-
" 'Raleigh',\n",
|
| 393 |
-
" 'Norfolk',\n",
|
| 394 |
-
" 'New Orleans',\n",
|
| 395 |
-
" 'Medford',\n",
|
| 396 |
-
" 'White Plains',\n",
|
| 397 |
-
" 'Oklahoma City',\n",
|
| 398 |
-
" 'Chicago',\n",
|
| 399 |
-
" 'El Paso',\n",
|
| 400 |
-
" 'Rockford',\n",
|
| 401 |
-
" 'Aguadilla',\n",
|
| 402 |
-
" 'Omaha',\n",
|
| 403 |
-
" 'Scottsbluff',\n",
|
| 404 |
-
" 'Yakutat',\n",
|
| 405 |
-
" 'Arcata',\n",
|
| 406 |
-
" 'Spokane',\n",
|
| 407 |
-
" 'Brownsville',\n",
|
| 408 |
-
" 'Bend',\n",
|
| 409 |
-
" 'Hagerstown',\n",
|
| 410 |
-
" 'Peoria',\n",
|
| 411 |
-
" 'Appleton',\n",
|
| 412 |
-
" 'Roanoke',\n",
|
| 413 |
-
" 'Eugene',\n",
|
| 414 |
-
" 'Rock Springs',\n",
|
| 415 |
-
" 'Dodge City',\n",
|
| 416 |
-
" 'Austin',\n",
|
| 417 |
-
" 'Miami',\n",
|
| 418 |
-
" 'Dallas',\n",
|
| 419 |
-
" 'Mosinee',\n",
|
| 420 |
-
" 'Killeen',\n",
|
| 421 |
-
" 'Lihue',\n",
|
| 422 |
-
" 'Pittsburgh',\n",
|
| 423 |
-
" 'Tallahassee',\n",
|
| 424 |
-
" 'Butte',\n",
|
| 425 |
-
" 'Lawton',\n",
|
| 426 |
-
" 'Honolulu',\n",
|
| 427 |
-
" 'Greenville',\n",
|
| 428 |
-
" 'Juneau',\n",
|
| 429 |
-
" 'Myrtle Beach',\n",
|
| 430 |
-
" 'Boston',\n",
|
| 431 |
-
" 'Charleston',\n",
|
| 432 |
-
" 'Latrobe',\n",
|
| 433 |
-
" 'Knoxville',\n",
|
| 434 |
-
" 'Denver',\n",
|
| 435 |
-
" 'Bangor',\n",
|
| 436 |
-
" 'Albany',\n",
|
| 437 |
-
" 'Punta Gorda',\n",
|
| 438 |
-
" 'Fort Lauderdale',\n",
|
| 439 |
-
" 'Philadelphia',\n",
|
| 440 |
-
" 'Binghamton',\n",
|
| 441 |
-
" 'Great Falls',\n",
|
| 442 |
-
" 'Shreveport',\n",
|
| 443 |
-
" 'Asheville',\n",
|
| 444 |
-
" 'Cheyenne',\n",
|
| 445 |
-
" 'Milwaukee',\n",
|
| 446 |
-
" 'Nome',\n",
|
| 447 |
-
" 'Laredo',\n",
|
| 448 |
-
" 'Des Moines',\n",
|
| 449 |
-
" 'Fayetteville',\n",
|
| 450 |
-
" 'Lewisburg',\n",
|
| 451 |
-
" 'Fort Dodge',\n",
|
| 452 |
-
" 'Cody',\n",
|
| 453 |
-
" 'Chattanooga',\n",
|
| 454 |
-
" 'Deadhorse',\n",
|
| 455 |
-
" 'Kotzebue',\n",
|
| 456 |
-
" 'Sitka',\n",
|
| 457 |
-
" 'Bozeman',\n",
|
| 458 |
-
" 'Palm Springs',\n",
|
| 459 |
-
" 'Memphis',\n",
|
| 460 |
-
" 'Nantucket',\n",
|
| 461 |
-
" 'Texarkana',\n",
|
| 462 |
-
" 'Lewiston',\n",
|
| 463 |
-
" 'Valdosta',\n",
|
| 464 |
-
" 'Birmingham',\n",
|
| 465 |
-
" 'Scranton',\n",
|
| 466 |
-
" 'Pensacola',\n",
|
| 467 |
-
" 'Hancock',\n",
|
| 468 |
-
" 'Los Angeles',\n",
|
| 469 |
-
" 'Mason City',\n",
|
| 470 |
-
" 'Savannah',\n",
|
| 471 |
-
" 'West Yellowstone',\n",
|
| 472 |
-
" 'Long Beach',\n",
|
| 473 |
-
" 'Reno',\n",
|
| 474 |
-
" 'Akron',\n",
|
| 475 |
-
" 'Louisville',\n",
|
| 476 |
-
" 'Hartford',\n",
|
| 477 |
-
" 'Cincinnati',\n",
|
| 478 |
-
" 'Rochester',\n",
|
| 479 |
-
" 'San Francisco',\n",
|
| 480 |
-
" 'Detroit',\n",
|
| 481 |
-
" 'Monterey',\n",
|
| 482 |
-
" 'Escanaba',\n",
|
| 483 |
-
" 'Eau Claire']"
|
| 484 |
-
]
|
| 485 |
-
},
|
| 486 |
-
"execution_count": 94,
|
| 487 |
-
"metadata": {},
|
| 488 |
-
"output_type": "execute_result"
|
| 489 |
-
}
|
| 490 |
-
],
|
| 491 |
-
"source": [
|
| 492 |
-
"city_set"
|
| 493 |
-
]
|
| 494 |
-
},
|
| 495 |
-
{
|
| 496 |
-
"cell_type": "code",
|
| 497 |
-
"execution_count": 16,
|
| 498 |
-
"id": "cd0f41fb",
|
| 499 |
-
"metadata": {},
|
| 500 |
-
"outputs": [
|
| 501 |
-
{
|
| 502 |
-
"name": "stdout",
|
| 503 |
-
"output_type": "stream",
|
| 504 |
-
"text": [
|
| 505 |
-
"1 Restaurant Name\n",
|
| 506 |
-
"3 City\n",
|
| 507 |
-
"9 Cuisines\n",
|
| 508 |
-
"10 Average Cost for two\n",
|
| 509 |
-
"11 Currency\n",
|
| 510 |
-
"17 Aggregate rating\n"
|
| 511 |
-
]
|
| 512 |
-
}
|
| 513 |
-
],
|
| 514 |
-
"source": [
|
| 515 |
-
"for idx, unit in enumerate(data_dict['columns']):\n",
|
| 516 |
-
" if unit in ['Restaurant Name', 'City', 'Cuisines', 'Average Cost for two','Aggregate rating','Currency']:\n",
|
| 517 |
-
" print(idx,unit)"
|
| 518 |
-
]
|
| 519 |
-
},
|
| 520 |
-
{
|
| 521 |
-
"cell_type": "code",
|
| 522 |
-
"execution_count": 17,
|
| 523 |
-
"id": "04fe71b7",
|
| 524 |
-
"metadata": {},
|
| 525 |
-
"outputs": [],
|
| 526 |
-
"source": [
|
| 527 |
-
"currency_set = set()\n",
|
| 528 |
-
"for unit in data_dict['data']:\n",
|
| 529 |
-
" currency_set.add(unit[11])"
|
| 530 |
-
]
|
| 531 |
-
},
|
| 532 |
-
{
|
| 533 |
-
"cell_type": "code",
|
| 534 |
-
"execution_count": 18,
|
| 535 |
-
"id": "3988186d",
|
| 536 |
-
"metadata": {},
|
| 537 |
-
"outputs": [
|
| 538 |
-
{
|
| 539 |
-
"data": {
|
| 540 |
-
"text/plain": [
|
| 541 |
-
"{'Botswana Pula(P)',\n",
|
| 542 |
-
" 'Brazilian Real(R$)',\n",
|
| 543 |
-
" 'Dollar($)',\n",
|
| 544 |
-
" 'Emirati Diram(AED)',\n",
|
| 545 |
-
" 'Indian Rupees(Rs.)',\n",
|
| 546 |
-
" 'Indonesian Rupiah(IDR)',\n",
|
| 547 |
-
" 'NewZealand($)',\n",
|
| 548 |
-
" 'Pounds(專)',\n",
|
| 549 |
-
" 'Qatari Rial(QR)',\n",
|
| 550 |
-
" 'Rand(R)',\n",
|
| 551 |
-
" 'Sri Lankan Rupee(LKR)',\n",
|
| 552 |
-
" 'Turkish Lira(TL)'}"
|
| 553 |
-
]
|
| 554 |
-
},
|
| 555 |
-
"execution_count": 18,
|
| 556 |
-
"metadata": {},
|
| 557 |
-
"output_type": "execute_result"
|
| 558 |
-
}
|
| 559 |
-
],
|
| 560 |
-
"source": [
|
| 561 |
-
"currency_set"
|
| 562 |
-
]
|
| 563 |
-
},
|
| 564 |
-
{
|
| 565 |
-
"cell_type": "code",
|
| 566 |
-
"execution_count": 20,
|
| 567 |
-
"id": "257e6a76",
|
| 568 |
-
"metadata": {},
|
| 569 |
-
"outputs": [],
|
| 570 |
-
"source": [
|
| 571 |
-
"exchange_rate = {\"Botswana Pula(P)\":0.074,\n",
|
| 572 |
-
" \"Brazilian Real(R$)\":0.21, \n",
|
| 573 |
-
" 'Dollar($)':1, \n",
|
| 574 |
-
" 'Emirati Diram(AED)':0.27,\n",
|
| 575 |
-
" \"Indian Rupees(Rs.)\":0.012087,\n",
|
| 576 |
-
" \"Indonesian Rupiah(IDR)\":0.000066,\n",
|
| 577 |
-
" 'NewZealand($)':0.61,\n",
|
| 578 |
-
" \"Pounds(專)\":1.28,\n",
|
| 579 |
-
" \"Qatari Rial(QR)\":0.27,\n",
|
| 580 |
-
" 'Rand(R)': 0.054,\n",
|
| 581 |
-
" \"Sri Lankan Rupee(LKR)\":0.0031,\n",
|
| 582 |
-
" 'Turkish Lira(TL)':0.037\n",
|
| 583 |
-
" }"
|
| 584 |
-
]
|
| 585 |
-
},
|
| 586 |
-
{
|
| 587 |
-
"cell_type": "code",
|
| 588 |
-
"execution_count": 136,
|
| 589 |
-
"id": "c6b2691e",
|
| 590 |
-
"metadata": {},
|
| 591 |
-
"outputs": [
|
| 592 |
-
{
|
| 593 |
-
"data": {
|
| 594 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 595 |
-
"model_id": "b7890e2caa7340d1870e641ada3249e1",
|
| 596 |
-
"version_major": 2,
|
| 597 |
-
"version_minor": 0
|
| 598 |
-
},
|
| 599 |
-
"text/plain": [
|
| 600 |
-
"0it [00:00, ?it/s]"
|
| 601 |
-
]
|
| 602 |
-
},
|
| 603 |
-
"metadata": {},
|
| 604 |
-
"output_type": "display_data"
|
| 605 |
-
}
|
| 606 |
-
],
|
| 607 |
-
"source": [
|
| 608 |
-
"from tqdm.autonotebook import tqdm\n",
|
| 609 |
-
"import random\n",
|
| 610 |
-
"new_data = []\n",
|
| 611 |
-
"\n",
|
| 612 |
-
"for idx, unit in tqdm(enumerate(data_dict['data'])):\n",
|
| 613 |
-
" tmp_dict = {k:\"\" for k in ['Name', 'City', 'Cuisines', 'Average Cost','Aggregate Rating']}\n",
|
| 614 |
-
" tmp_dict[\"Name\"] = unit[1]\n",
|
| 615 |
-
" tmp_dict[\"City\"] = random.sample(city_set,1)[0]\n",
|
| 616 |
-
" tmp_dict[\"Cuisines\"] = unit[9]\n",
|
| 617 |
-
" tmp_dict[\"Average Cost\"] = max(random.randint(10,100),int(unit[10] / 2 * exchange_rate[unit[11]]))\n",
|
| 618 |
-
" tmp_dict[\"Aggregate Rating\"] = unit[17]\n",
|
| 619 |
-
" new_data.append(tmp_dict)"
|
| 620 |
-
]
|
| 621 |
-
},
|
| 622 |
-
{
|
| 623 |
-
"cell_type": "code",
|
| 624 |
-
"execution_count": 137,
|
| 625 |
-
"id": "f27aaff1",
|
| 626 |
-
"metadata": {},
|
| 627 |
-
"outputs": [],
|
| 628 |
-
"source": [
|
| 629 |
-
"countries = [\"Chinese\", \"American\", \"Italian\", \"Mexican\", \"Indian\",\"Mediterranean\",\"French\"]\n",
|
| 630 |
-
"cuisine = [\"Tea\",\"Seafood\",\"Bakery\",\"Desserts\",\"BBQ\",\"Fast Food\",\"Cafe\",\"Pizza\"]\n",
|
| 631 |
-
"total_cuisine = countries + cuisine\n",
|
| 632 |
-
"for unit in new_data:\n",
|
| 633 |
-
" flag = False\n",
|
| 634 |
-
" final_cuisine = set()\n",
|
| 635 |
-
"# for c in total_cuisine:\n",
|
| 636 |
-
"# if c in str(unit['Cuisines']):\n",
|
| 637 |
-
"# final_cuisine.add(c)\n",
|
| 638 |
-
" choice_number = random.choices([0,1,1,2])[0]\n",
|
| 639 |
-
" for x in random.sample(countries,choice_number):\n",
|
| 640 |
-
" final_cuisine.add(x)\n",
|
| 641 |
-
" choice_number = random.choices([2,3,4])[0]\n",
|
| 642 |
-
" for x in random.sample(cuisine,choice_number):\n",
|
| 643 |
-
" final_cuisine.add(x)\n",
|
| 644 |
-
" unit['Cuisines'] = \", \".join(x for x in final_cuisine)"
|
| 645 |
-
]
|
| 646 |
-
},
|
| 647 |
-
{
|
| 648 |
-
"cell_type": "code",
|
| 649 |
-
"execution_count": 134,
|
| 650 |
-
"id": "8388274c",
|
| 651 |
-
"metadata": {},
|
| 652 |
-
"outputs": [
|
| 653 |
-
{
|
| 654 |
-
"name": "stdout",
|
| 655 |
-
"output_type": "stream",
|
| 656 |
-
"text": [
|
| 657 |
-
"1\n"
|
| 658 |
-
]
|
| 659 |
-
}
|
| 660 |
-
],
|
| 661 |
-
"source": [
|
| 662 |
-
"choice_number = random.choices([1,1,2])[0]\n",
|
| 663 |
-
"print(choice_number)"
|
| 664 |
-
]
|
| 665 |
-
},
|
| 666 |
-
{
|
| 667 |
-
"cell_type": "code",
|
| 668 |
-
"execution_count": 149,
|
| 669 |
-
"id": "6eb0520a",
|
| 670 |
-
"metadata": {},
|
| 671 |
-
"outputs": [
|
| 672 |
-
{
|
| 673 |
-
"data": {
|
| 674 |
-
"text/plain": [
|
| 675 |
-
"[1]"
|
| 676 |
-
]
|
| 677 |
-
},
|
| 678 |
-
"execution_count": 149,
|
| 679 |
-
"metadata": {},
|
| 680 |
-
"output_type": "execute_result"
|
| 681 |
-
}
|
| 682 |
-
],
|
| 683 |
-
"source": [
|
| 684 |
-
"random.choices([1,1,2])"
|
| 685 |
-
]
|
| 686 |
-
},
|
| 687 |
-
{
|
| 688 |
-
"cell_type": "code",
|
| 689 |
-
"execution_count": 148,
|
| 690 |
-
"id": "9e3afb30",
|
| 691 |
-
"metadata": {},
|
| 692 |
-
"outputs": [
|
| 693 |
-
{
|
| 694 |
-
"data": {
|
| 695 |
-
"text/plain": [
|
| 696 |
-
"{'Name': 'Gurgaon Hights',\n",
|
| 697 |
-
" 'City': 'New York',\n",
|
| 698 |
-
" 'Cuisines': 'Cafe, American, Indian, Fast Food',\n",
|
| 699 |
-
" 'Average Cost': 46,\n",
|
| 700 |
-
" 'Aggregate Rating': 2.5}"
|
| 701 |
-
]
|
| 702 |
-
},
|
| 703 |
-
"execution_count": 148,
|
| 704 |
-
"metadata": {},
|
| 705 |
-
"output_type": "execute_result"
|
| 706 |
-
}
|
| 707 |
-
],
|
| 708 |
-
"source": [
|
| 709 |
-
"new_data[1357]"
|
| 710 |
-
]
|
| 711 |
-
},
|
| 712 |
-
{
|
| 713 |
-
"cell_type": "code",
|
| 714 |
-
"execution_count": 143,
|
| 715 |
-
"id": "bfb243c0",
|
| 716 |
-
"metadata": {},
|
| 717 |
-
"outputs": [],
|
| 718 |
-
"source": [
|
| 719 |
-
"df = pd.DataFrame(new_data)"
|
| 720 |
-
]
|
| 721 |
-
},
|
| 722 |
-
{
|
| 723 |
-
"cell_type": "code",
|
| 724 |
-
"execution_count": 144,
|
| 725 |
-
"id": "af7e3411",
|
| 726 |
-
"metadata": {},
|
| 727 |
-
"outputs": [],
|
| 728 |
-
"source": [
|
| 729 |
-
"df.to_csv('/home/xj/toolAugEnv/code/toolConstraint/database/restaurants/clean_restaurant_2022.csv')"
|
| 730 |
-
]
|
| 731 |
-
},
|
| 732 |
-
{
|
| 733 |
-
"cell_type": "code",
|
| 734 |
-
"execution_count": 128,
|
| 735 |
-
"id": "dad9bf9f",
|
| 736 |
-
"metadata": {},
|
| 737 |
-
"outputs": [
|
| 738 |
-
{
|
| 739 |
-
"data": {
|
| 740 |
-
"text/html": [
|
| 741 |
-
"<div>\n",
|
| 742 |
-
"<style scoped>\n",
|
| 743 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
| 744 |
-
" vertical-align: middle;\n",
|
| 745 |
-
" }\n",
|
| 746 |
-
"\n",
|
| 747 |
-
" .dataframe tbody tr th {\n",
|
| 748 |
-
" vertical-align: top;\n",
|
| 749 |
-
" }\n",
|
| 750 |
-
"\n",
|
| 751 |
-
" .dataframe thead th {\n",
|
| 752 |
-
" text-align: right;\n",
|
| 753 |
-
" }\n",
|
| 754 |
-
"</style>\n",
|
| 755 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
| 756 |
-
" <thead>\n",
|
| 757 |
-
" <tr style=\"text-align: right;\">\n",
|
| 758 |
-
" <th></th>\n",
|
| 759 |
-
" <th>Name</th>\n",
|
| 760 |
-
" <th>City</th>\n",
|
| 761 |
-
" <th>Cuisines</th>\n",
|
| 762 |
-
" <th>Average Cost</th>\n",
|
| 763 |
-
" <th>Aggregate Rating</th>\n",
|
| 764 |
-
" </tr>\n",
|
| 765 |
-
" </thead>\n",
|
| 766 |
-
" <tbody>\n",
|
| 767 |
-
" <tr>\n",
|
| 768 |
-
" <th>0</th>\n",
|
| 769 |
-
" <td>Le Petit Souffle</td>\n",
|
| 770 |
-
" <td>Concord</td>\n",
|
| 771 |
-
" <td>French, BBQ, Desserts, Fast Food</td>\n",
|
| 772 |
-
" <td>45</td>\n",
|
| 773 |
-
" <td>4.8</td>\n",
|
| 774 |
-
" </tr>\n",
|
| 775 |
-
" <tr>\n",
|
| 776 |
-
" <th>1</th>\n",
|
| 777 |
-
" <td>Izakaya Kikufuji</td>\n",
|
| 778 |
-
" <td>Niagara Falls</td>\n",
|
| 779 |
-
" <td>Mediterranean, Desserts, Seafood</td>\n",
|
| 780 |
-
" <td>44</td>\n",
|
| 781 |
-
" <td>4.5</td>\n",
|
| 782 |
-
" </tr>\n",
|
| 783 |
-
" <tr>\n",
|
| 784 |
-
" <th>2</th>\n",
|
| 785 |
-
" <td>Heat - Edsa Shangri-La</td>\n",
|
| 786 |
-
" <td>Walla Walla</td>\n",
|
| 787 |
-
" <td>Italian, BBQ, Fast Food, Cafe, Indian, Seafood</td>\n",
|
| 788 |
-
" <td>148</td>\n",
|
| 789 |
-
" <td>4.4</td>\n",
|
| 790 |
-
" </tr>\n",
|
| 791 |
-
" <tr>\n",
|
| 792 |
-
" <th>3</th>\n",
|
| 793 |
-
" <td>Ooma</td>\n",
|
| 794 |
-
" <td>Salt Lake City</td>\n",
|
| 795 |
-
" <td>Pizza, Italian, Bakery, Cafe, Seafood</td>\n",
|
| 796 |
-
" <td>55</td>\n",
|
| 797 |
-
" <td>4.9</td>\n",
|
| 798 |
-
" </tr>\n",
|
| 799 |
-
" <tr>\n",
|
| 800 |
-
" <th>4</th>\n",
|
| 801 |
-
" <td>Sambo Kojin</td>\n",
|
| 802 |
-
" <td>Rochester</td>\n",
|
| 803 |
-
" <td>Tea, Pizza, French, Cafe, Mediterranean, Seafood</td>\n",
|
| 804 |
-
" <td>88</td>\n",
|
| 805 |
-
" <td>4.8</td>\n",
|
| 806 |
-
" </tr>\n",
|
| 807 |
-
" <tr>\n",
|
| 808 |
-
" <th>...</th>\n",
|
| 809 |
-
" <td>...</td>\n",
|
| 810 |
-
" <td>...</td>\n",
|
| 811 |
-
" <td>...</td>\n",
|
| 812 |
-
" <td>...</td>\n",
|
| 813 |
-
" <td>...</td>\n",
|
| 814 |
-
" </tr>\n",
|
| 815 |
-
" <tr>\n",
|
| 816 |
-
" <th>9546</th>\n",
|
| 817 |
-
" <td>Naml郾 Gurme</td>\n",
|
| 818 |
-
" <td>Minneapolis</td>\n",
|
| 819 |
-
" <td>Tea, American, Desserts</td>\n",
|
| 820 |
-
" <td>84</td>\n",
|
| 821 |
-
" <td>4.1</td>\n",
|
| 822 |
-
" </tr>\n",
|
| 823 |
-
" <tr>\n",
|
| 824 |
-
" <th>9547</th>\n",
|
| 825 |
-
" <td>Ceviz A埕ac郾</td>\n",
|
| 826 |
-
" <td>Waco</td>\n",
|
| 827 |
-
" <td>Tea, Cafe, BBQ, Mediterranean</td>\n",
|
| 828 |
-
" <td>58</td>\n",
|
| 829 |
-
" <td>4.2</td>\n",
|
| 830 |
-
" </tr>\n",
|
| 831 |
-
" <tr>\n",
|
| 832 |
-
" <th>9548</th>\n",
|
| 833 |
-
" <td>Huqqa</td>\n",
|
| 834 |
-
" <td>Chicago</td>\n",
|
| 835 |
-
" <td>Tea, Chinese, Bakery, Italian</td>\n",
|
| 836 |
-
" <td>13</td>\n",
|
| 837 |
-
" <td>3.7</td>\n",
|
| 838 |
-
" </tr>\n",
|
| 839 |
-
" <tr>\n",
|
| 840 |
-
" <th>9549</th>\n",
|
| 841 |
-
" <td>A侓侓k Kahve</td>\n",
|
| 842 |
-
" <td>Grand Rapids</td>\n",
|
| 843 |
-
" <td>Cafe, French, Bakery, Fast Food</td>\n",
|
| 844 |
-
" <td>30</td>\n",
|
| 845 |
-
" <td>4.0</td>\n",
|
| 846 |
-
" </tr>\n",
|
| 847 |
-
" <tr>\n",
|
| 848 |
-
" <th>9550</th>\n",
|
| 849 |
-
" <td>Walter's Coffee Roastery</td>\n",
|
| 850 |
-
" <td>Hibbing</td>\n",
|
| 851 |
-
" <td>Pizza, Mexican, Bakery, Cafe, Seafood</td>\n",
|
| 852 |
-
" <td>20</td>\n",
|
| 853 |
-
" <td>4.0</td>\n",
|
| 854 |
-
" </tr>\n",
|
| 855 |
-
" </tbody>\n",
|
| 856 |
-
"</table>\n",
|
| 857 |
-
"<p>9551 rows × 5 columns</p>\n",
|
| 858 |
-
"</div>"
|
| 859 |
-
],
|
| 860 |
-
"text/plain": [
|
| 861 |
-
" Name City \\\n",
|
| 862 |
-
"0 Le Petit Souffle Concord \n",
|
| 863 |
-
"1 Izakaya Kikufuji Niagara Falls \n",
|
| 864 |
-
"2 Heat - Edsa Shangri-La Walla Walla \n",
|
| 865 |
-
"3 Ooma Salt Lake City \n",
|
| 866 |
-
"4 Sambo Kojin Rochester \n",
|
| 867 |
-
"... ... ... \n",
|
| 868 |
-
"9546 Naml郾 Gurme Minneapolis \n",
|
| 869 |
-
"9547 Ceviz A埕ac郾 Waco \n",
|
| 870 |
-
"9548 Huqqa Chicago \n",
|
| 871 |
-
"9549 A侓侓k Kahve Grand Rapids \n",
|
| 872 |
-
"9550 Walter's Coffee Roastery Hibbing \n",
|
| 873 |
-
"\n",
|
| 874 |
-
" Cuisines Average Cost \\\n",
|
| 875 |
-
"0 French, BBQ, Desserts, Fast Food 45 \n",
|
| 876 |
-
"1 Mediterranean, Desserts, Seafood 44 \n",
|
| 877 |
-
"2 Italian, BBQ, Fast Food, Cafe, Indian, Seafood 148 \n",
|
| 878 |
-
"3 Pizza, Italian, Bakery, Cafe, Seafood 55 \n",
|
| 879 |
-
"4 Tea, Pizza, French, Cafe, Mediterranean, Seafood 88 \n",
|
| 880 |
-
"... ... ... \n",
|
| 881 |
-
"9546 Tea, American, Desserts 84 \n",
|
| 882 |
-
"9547 Tea, Cafe, BBQ, Mediterranean 58 \n",
|
| 883 |
-
"9548 Tea, Chinese, Bakery, Italian 13 \n",
|
| 884 |
-
"9549 Cafe, French, Bakery, Fast Food 30 \n",
|
| 885 |
-
"9550 Pizza, Mexican, Bakery, Cafe, Seafood 20 \n",
|
| 886 |
-
"\n",
|
| 887 |
-
" Aggregate Rating \n",
|
| 888 |
-
"0 4.8 \n",
|
| 889 |
-
"1 4.5 \n",
|
| 890 |
-
"2 4.4 \n",
|
| 891 |
-
"3 4.9 \n",
|
| 892 |
-
"4 4.8 \n",
|
| 893 |
-
"... ... \n",
|
| 894 |
-
"9546 4.1 \n",
|
| 895 |
-
"9547 4.2 \n",
|
| 896 |
-
"9548 3.7 \n",
|
| 897 |
-
"9549 4.0 \n",
|
| 898 |
-
"9550 4.0 \n",
|
| 899 |
-
"\n",
|
| 900 |
-
"[9551 rows x 5 columns]"
|
| 901 |
-
]
|
| 902 |
-
},
|
| 903 |
-
"execution_count": 128,
|
| 904 |
-
"metadata": {},
|
| 905 |
-
"output_type": "execute_result"
|
| 906 |
-
}
|
| 907 |
-
],
|
| 908 |
-
"source": [
|
| 909 |
-
"df"
|
| 910 |
-
]
|
| 911 |
-
},
|
| 912 |
-
{
|
| 913 |
-
"cell_type": "code",
|
| 914 |
-
"execution_count": 48,
|
| 915 |
-
"id": "e168b1c5",
|
| 916 |
-
"metadata": {},
|
| 917 |
-
"outputs": [],
|
| 918 |
-
"source": [
|
| 919 |
-
"cuisine_dict = {}\n",
|
| 920 |
-
"for unit in new_data:\n",
|
| 921 |
-
" for x in str(unit['Cuisines']).split(', '):\n",
|
| 922 |
-
" if x not in cuisine_dict:\n",
|
| 923 |
-
" cuisine_dict[x] = 1\n",
|
| 924 |
-
" else:\n",
|
| 925 |
-
" cuisine_dict[x] += 1"
|
| 926 |
-
]
|
| 927 |
-
},
|
| 928 |
-
{
|
| 929 |
-
"cell_type": "code",
|
| 930 |
-
"execution_count": 49,
|
| 931 |
-
"id": "564d4bda",
|
| 932 |
-
"metadata": {},
|
| 933 |
-
"outputs": [
|
| 934 |
-
{
|
| 935 |
-
"name": "stdout",
|
| 936 |
-
"output_type": "stream",
|
| 937 |
-
"text": [
|
| 938 |
-
"French 29\n",
|
| 939 |
-
"Japanese 135\n",
|
| 940 |
-
"Desserts 653\n",
|
| 941 |
-
"Seafood 174\n",
|
| 942 |
-
"Asian 233\n",
|
| 943 |
-
"Filipino 10\n",
|
| 944 |
-
"Indian 70\n",
|
| 945 |
-
"Sushi 75\n",
|
| 946 |
-
"Korean 21\n",
|
| 947 |
-
"Chinese 2735\n",
|
| 948 |
-
"European 148\n",
|
| 949 |
-
"Mexican 181\n",
|
| 950 |
-
"American 390\n",
|
| 951 |
-
"Ice Cream 226\n",
|
| 952 |
-
"Cafe 703\n",
|
| 953 |
-
"Italian 764\n",
|
| 954 |
-
"Pizza 381\n",
|
| 955 |
-
"Bakery 745\n",
|
| 956 |
-
"Mediterranean 112\n",
|
| 957 |
-
"Fast Food 1986\n",
|
| 958 |
-
"Brazilian 28\n",
|
| 959 |
-
"Arabian 28\n",
|
| 960 |
-
"Bar Food 39\n",
|
| 961 |
-
"Grill 21\n",
|
| 962 |
-
"International 21\n",
|
| 963 |
-
"Peruvian 1\n",
|
| 964 |
-
"Latin American 11\n",
|
| 965 |
-
"Burger 251\n",
|
| 966 |
-
"Juices 29\n",
|
| 967 |
-
"Healthy Food 150\n",
|
| 968 |
-
"Beverages 229\n",
|
| 969 |
-
"Lebanese 69\n",
|
| 970 |
-
"Sandwich 53\n",
|
| 971 |
-
"Steak 62\n",
|
| 972 |
-
"BBQ 33\n",
|
| 973 |
-
"Gourmet Fast Food 1\n",
|
| 974 |
-
"Mineira 1\n",
|
| 975 |
-
"North Eastern 9\n",
|
| 976 |
-
"nan 9\n",
|
| 977 |
-
"Coffee and Tea 19\n",
|
| 978 |
-
"Vegetarian 23\n",
|
| 979 |
-
"Tapas 19\n",
|
| 980 |
-
"Breakfast 41\n",
|
| 981 |
-
"Diner 6\n",
|
| 982 |
-
"Southern 24\n",
|
| 983 |
-
"Southwestern 7\n",
|
| 984 |
-
"Spanish 16\n",
|
| 985 |
-
"Argentine 2\n",
|
| 986 |
-
"Caribbean 7\n",
|
| 987 |
-
"German 10\n",
|
| 988 |
-
"Vietnamese 21\n",
|
| 989 |
-
"Thai 234\n",
|
| 990 |
-
"Modern Australian 11\n",
|
| 991 |
-
"Teriyaki 2\n",
|
| 992 |
-
"Cajun 10\n",
|
| 993 |
-
"Canadian 1\n",
|
| 994 |
-
"Tex-Mex 19\n",
|
| 995 |
-
"Middle Eastern 22\n",
|
| 996 |
-
"Greek 15\n",
|
| 997 |
-
"Bubble Tea 1\n",
|
| 998 |
-
"Tea 48\n",
|
| 999 |
-
"Australian 5\n",
|
| 1000 |
-
"Fusion 4\n",
|
| 1001 |
-
"Cuban 2\n",
|
| 1002 |
-
"Hawaiian 8\n",
|
| 1003 |
-
"Salad 93\n",
|
| 1004 |
-
"Irish 1\n",
|
| 1005 |
-
"New American 2\n",
|
| 1006 |
-
"Soul Food 1\n",
|
| 1007 |
-
"Turkish 15\n",
|
| 1008 |
-
"Pub Food 2\n",
|
| 1009 |
-
"Persian 2\n",
|
| 1010 |
-
"Continental 736\n",
|
| 1011 |
-
"Singaporean 4\n",
|
| 1012 |
-
"Malay 1\n",
|
| 1013 |
-
"Cantonese 2\n",
|
| 1014 |
-
"Dim Sum 3\n",
|
| 1015 |
-
"Western 10\n",
|
| 1016 |
-
"Finger Food 114\n",
|
| 1017 |
-
"British 16\n",
|
| 1018 |
-
"Deli 3\n",
|
| 1019 |
-
"Indonesian 14\n",
|
| 1020 |
-
"North Indian 3960\n",
|
| 1021 |
-
"Mughlai 995\n",
|
| 1022 |
-
"Biryani 177\n",
|
| 1023 |
-
"South Indian 636\n",
|
| 1024 |
-
"Pakistani 12\n",
|
| 1025 |
-
"Afghani 14\n",
|
| 1026 |
-
"Hyderabadi 26\n",
|
| 1027 |
-
"Rajasthani 21\n",
|
| 1028 |
-
"Street Food 562\n",
|
| 1029 |
-
"Goan 20\n",
|
| 1030 |
-
"African 8\n",
|
| 1031 |
-
"Portuguese 7\n",
|
| 1032 |
-
"Gujarati 11\n",
|
| 1033 |
-
"Armenian 3\n",
|
| 1034 |
-
"Mithai 380\n",
|
| 1035 |
-
"Maharashtrian 10\n",
|
| 1036 |
-
"Modern Indian 16\n",
|
| 1037 |
-
"Charcoal Grill 4\n",
|
| 1038 |
-
"Malaysian 22\n",
|
| 1039 |
-
"Burmese 10\n",
|
| 1040 |
-
"Chettinad 11\n",
|
| 1041 |
-
"Parsi 8\n",
|
| 1042 |
-
"Tibetan 44\n",
|
| 1043 |
-
"Raw Meats 114\n",
|
| 1044 |
-
"Kerala 23\n",
|
| 1045 |
-
"Belgian 2\n",
|
| 1046 |
-
"Kashmiri 20\n",
|
| 1047 |
-
"South American 2\n",
|
| 1048 |
-
"Bengali 29\n",
|
| 1049 |
-
"Iranian 3\n",
|
| 1050 |
-
"Lucknowi 13\n",
|
| 1051 |
-
"Awadhi 11\n",
|
| 1052 |
-
"Nepalese 9\n",
|
| 1053 |
-
"Drinks Only 2\n",
|
| 1054 |
-
"Oriya 2\n",
|
| 1055 |
-
"Bihari 6\n",
|
| 1056 |
-
"Assamese 4\n",
|
| 1057 |
-
"Andhra 10\n",
|
| 1058 |
-
"Mangalorean 4\n",
|
| 1059 |
-
"Malwani 1\n",
|
| 1060 |
-
"Cuisine Varies 1\n",
|
| 1061 |
-
"Moroccan 5\n",
|
| 1062 |
-
"Naga 8\n",
|
| 1063 |
-
"Sri Lankan 5\n",
|
| 1064 |
-
"Peranakan 1\n",
|
| 1065 |
-
"Sunda 3\n",
|
| 1066 |
-
"Ramen 2\n",
|
| 1067 |
-
"Kiwi 6\n",
|
| 1068 |
-
"Asian Fusion 2\n",
|
| 1069 |
-
"Taiwanese 2\n",
|
| 1070 |
-
"Fish and Chips 1\n",
|
| 1071 |
-
"Contemporary 9\n",
|
| 1072 |
-
"Scottish 3\n",
|
| 1073 |
-
"Curry 6\n",
|
| 1074 |
-
"Patisserie 4\n",
|
| 1075 |
-
"South African 6\n",
|
| 1076 |
-
"Durban 1\n",
|
| 1077 |
-
"Kebab 10\n",
|
| 1078 |
-
"Turkish Pizza 8\n",
|
| 1079 |
-
"Izgara 2\n",
|
| 1080 |
-
"World Cuisine 4\n",
|
| 1081 |
-
"D韄ner 1\n",
|
| 1082 |
-
"Restaurant Cafe 4\n",
|
| 1083 |
-
"B韄rek 1\n"
|
| 1084 |
-
]
|
| 1085 |
-
}
|
| 1086 |
-
],
|
| 1087 |
-
"source": [
|
| 1088 |
-
"for unit in cuisine_dict:\n",
|
| 1089 |
-
" print(unit,cuisine_dict[unit])"
|
| 1090 |
-
]
|
| 1091 |
-
},
|
| 1092 |
-
{
|
| 1093 |
-
"cell_type": "code",
|
| 1094 |
-
"execution_count": null,
|
| 1095 |
-
"id": "967426f0",
|
| 1096 |
-
"metadata": {},
|
| 1097 |
-
"outputs": [],
|
| 1098 |
-
"source": [
|
| 1099 |
-
"cuisine = [\"Chinese\", \"American\", \"Italian\", \"Mexican\", \"Indian\",\"Mediterranean\",\"Middle Eastern\",\"Breakfast\",\"Korean\",\"Asian\",\"French\",\"Tea\",\"Seafood\",\"Bakery\",\"Street Food\"]"
|
| 1100 |
-
]
|
| 1101 |
-
},
|
| 1102 |
-
{
|
| 1103 |
-
"cell_type": "code",
|
| 1104 |
-
"execution_count": 67,
|
| 1105 |
-
"id": "880dd6bf",
|
| 1106 |
-
"metadata": {},
|
| 1107 |
-
"outputs": [],
|
| 1108 |
-
"source": [
|
| 1109 |
-
"countries = [\"Chinese\", \"American\", \"Italian\", \"Mexican\", \"Indian\",\"Mediterranean\",\"Middle Eastern\",,\"Korean\",\"Asian\",\"French\"]"
|
| 1110 |
-
]
|
| 1111 |
-
},
|
| 1112 |
-
{
|
| 1113 |
-
"cell_type": "code",
|
| 1114 |
-
"execution_count": 68,
|
| 1115 |
-
"id": "89d9aba9",
|
| 1116 |
-
"metadata": {},
|
| 1117 |
-
"outputs": [],
|
| 1118 |
-
"source": [
|
| 1119 |
-
"cuisine = [\"Tea\",\"Seafood\",\"Bakery\",\"Street Food\",\"Desserts\",\"BBQ\",\"Street Food\",\"Fast Food\",\"Cafe\",\"Pizza\"]"
|
| 1120 |
-
]
|
| 1121 |
-
},
|
| 1122 |
-
{
|
| 1123 |
-
"cell_type": "code",
|
| 1124 |
-
"execution_count": null,
|
| 1125 |
-
"id": "ff103725",
|
| 1126 |
-
"metadata": {},
|
| 1127 |
-
"outputs": [],
|
| 1128 |
-
"source": []
|
| 1129 |
-
}
|
| 1130 |
-
],
|
| 1131 |
-
"metadata": {
|
| 1132 |
-
"kernelspec": {
|
| 1133 |
-
"display_name": "Python 3 (ipykernel)",
|
| 1134 |
-
"language": "python",
|
| 1135 |
-
"name": "python3"
|
| 1136 |
-
},
|
| 1137 |
-
"language_info": {
|
| 1138 |
-
"codemirror_mode": {
|
| 1139 |
-
"name": "ipython",
|
| 1140 |
-
"version": 3
|
| 1141 |
-
},
|
| 1142 |
-
"file_extension": ".py",
|
| 1143 |
-
"mimetype": "text/x-python",
|
| 1144 |
-
"name": "python",
|
| 1145 |
-
"nbconvert_exporter": "python",
|
| 1146 |
-
"pygments_lexer": "ipython3",
|
| 1147 |
-
"version": "3.9.16"
|
| 1148 |
-
}
|
| 1149 |
-
},
|
| 1150 |
-
"nbformat": 4,
|
| 1151 |
-
"nbformat_minor": 5
|
| 1152 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|