File size: 14,737 Bytes
80b7c55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fc9ef3
452afcb
80b7c55
 
e281857
80b7c55
 
 
 
 
 
e281857
80b7c55
 
 
 
 
77c26bd
80b7c55
 
 
 
afdb882
 
80b7c55
 
 
403215c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80b7c55
403215c
452afcb
 
80b7c55
452afcb
80b7c55
452afcb
 
 
 
80b7c55
 
403215c
 
 
 
 
80b7c55
403215c
80b7c55
 
 
 
 
 
 
 
 
ea9345e
 
 
 
 
 
 
 
 
 
 
80b7c55
ea9345e
 
0b8fd4f
 
7321625
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b8fd4f
 
 
 
7321625
0b8fd4f
 
 
7321625
 
 
 
0b8fd4f
 
 
7321625
0b8fd4f
ea9345e
 
0b8fd4f
 
 
 
7321625
 
0b8fd4f
7321625
0b8fd4f
 
 
7321625
 
 
 
 
0b8fd4f
 
 
7321625
0b8fd4f
 
 
 
 
 
055ccc0
ea9345e
 
7321625
77c26bd
 
 
ea9345e
77c26bd
 
 
80b7c55
 
 
 
 
 
 
e281857
403215c
80b7c55
77c26bd
 
80b7c55
 
 
 
 
e281857
80b7c55
 
 
 
 
 
 
 
 
 
 
 
 
afdb882
80b7c55
 
 
aa3f395
acbc2ea
e281857
80b7c55
 
 
 
 
 
 
 
 
 
 
 
 
 
77c26bd
80b7c55
 
7321625
80b7c55
1af3003
7321625
1af3003
21655da
80b7c55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e281857
 
80b7c55
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f834299
 
7321625
f834299
 
 
 
 
 
7321625
 
 
 
 
f834299
 
7321625
 
 
 
f834299
 
 
 
7321625
f834299
 
7321625
f834299
 
 
 
80b7c55
 
452afcb
 
 
 
 
 
 
a112d34
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import glob
import json
import os
from dataclasses import dataclass

import dateutil
import numpy as np

from src.display.formatting import make_clickable_model
from src.display.utils import AutoEvalColumn, ModelType, Tasks, Precision, WeightType
from src.submission.check_validity import is_model_on_hub


@dataclass
class EvalResult:
    """Represents one full evaluation. Built from a combination of the result and request file for a given run."""

    eval_name: str # org_model_precision (uid)
    full_model: str # org/model (path on hub)
    org: str
    model: str
    revision: str # commit hash, "" if main
    results: dict
    precision: Precision = Precision.Unknown
    model_type: ModelType = ModelType.Unknown # Pretrained, fine tuned, ...
    weight_type: WeightType = WeightType.Original # Original or Adapter
    architecture: str = "Unknown"
    license: str = "?"
    likes: int = 0
    num_params: int = 0
    date: str = "" # submission date of request file
    still_on_hub: bool = False
    energy_score: str = "NA" # energy consumption in kWh, "NA" if not available

    @classmethod
    def init_from_json_file(self, json_filepath):
        """Inits the result from the specific model result file"""
        with open(json_filepath) as fp:
            data = json.load(fp)

        config = data.get("config_general")

        # Handle case where config_general is None
        if config is None:
            # Set default values
            precision = Precision.Unknown
            org_and_model = data.get("model_name", "Unknown/Unknown")
            if not isinstance(org_and_model, str):
                org_and_model = "Unknown/Unknown"
            revision = "main"
        else:
            # Precision
            precision = Precision.from_str(config.get("model_dtype"))
            # Get revision
            revision = config.get("model_sha", "")
            # Get model and org
            org_and_model = config.get("model_name", config.get("model_args", None))
            
        if isinstance(org_and_model, str):
            org_and_model = org_and_model.split("/", 1)
        else:
            org_and_model = ["Unknown", "Unknown"]

        # Already handled above

        if len(org_and_model) == 1:
            org = None
            model = org_and_model[0]
            result_key = f"{model}_{precision.value.name}"
        else:
            org = org_and_model[0]
            model = org_and_model[1]
            result_key = f"{org}_{model}_{precision.value.name}"
        full_model = "/".join(org_and_model)

        # Use a safe default for model_sha if config is None
        model_sha = "main"
        if config is not None:
            model_sha = config.get("model_sha", "main")
            
        still_on_hub, _, model_config = is_model_on_hub(
            full_model, model_sha, trust_remote_code=True, test_tokenizer=False
        )
        architecture = "?"
        if model_config is not None:
            architectures = getattr(model_config, "architectures", None)
            if architectures:
                architecture = ";".join(architectures)

        # Extract results available in this file (some results are split in several files)
        results = {}
        
        # Check if results key exists in the data
        if "results" not in data:
            # If no results, set all benchmarks to None
            for task in Tasks:
                task = task.value
                results[task.benchmark] = None
        else:
            # Process results normally
            for task in Tasks:
                task = task.value

                # We average all scores of a given metric (not all metrics are present in all files)
                # Handle metrics that could be None in the JSON
                metric_values = []
                
                # Define the expected metric name and alternative names for each benchmark
                expected_metric = task.metric
                alternative_metrics = []
                
                print(f"Processing benchmark: {task.benchmark}, expected metric: {expected_metric}")
                
                # Set up alternative metric names based on the benchmark
                if task.benchmark == "custom|folio:logical_reasoning|0":
                    if expected_metric != "folio_em":
                        alternative_metrics = ["folio_em"]
                elif task.benchmark == "custom|telecom:qna|0":
                    if expected_metric != "telecom_qna_em":
                        alternative_metrics = ["telecom_qna_em"]
                elif task.benchmark == "custom|3gpp:tsg|0":
                    if expected_metric != "em":
                        alternative_metrics = ["em"]
                elif task.benchmark == "custom|math:problem_solving|0":
                    if expected_metric != "math_metric":
                        alternative_metrics = ["math_metric"]
                elif task.benchmark == "custom|spider:text2sql|0":
                    if expected_metric != "sql_metric":
                        alternative_metrics = ["sql_metric"]
                
                # Check for results with the benchmark name
                for k, v in data["results"].items():
                    if task.benchmark == k:
                        # Try the expected metric name first
                        metric_value = v.get(expected_metric)
                        
                        # If not found, try alternative metric names
                        if metric_value is None:
                            for alt_metric in alternative_metrics:
                                if alt_metric in v:
                                    metric_value = v.get(alt_metric)
                                    break
                        
                        if metric_value is not None:
                            metric_values.append(metric_value)
                            print(f"Found metric value for {task.benchmark}: {metric_value}")
                
                accs = np.array([v for v in metric_values if v is not None])
                if len(accs) == 0:
                    # Also check the "all" section for metrics
                    if "all" in data["results"]:
                        all_results = data["results"]["all"]
                        
                        print(f"Checking 'all' section for {task.benchmark}, available keys: {list(all_results.keys())}")
                        
                        # Try the expected metric name first
                        metric_value = all_results.get(expected_metric)
                        
                        # If not found, try alternative metric names
                        if metric_value is None:
                            for alt_metric in alternative_metrics:
                                if alt_metric in all_results:
                                    metric_value = all_results.get(alt_metric)
                                    print(f"Found alternative metric {alt_metric} in 'all' section")
                                    break
                        
                        if metric_value is not None:
                            accs = np.array([metric_value])
                            print(f"Found metric value in 'all' section for {task.benchmark}: {metric_value}")
                        else:
                            results[task.benchmark] = None
                            continue
                    else:
                        results[task.benchmark] = None
                        continue

                mean_acc = np.mean(accs) * 100.0
                results[task.benchmark] = mean_acc
                print(f"Final result for {task.benchmark}: {mean_acc}")
            
        # Extract energy score if available
        energy_score = "NA"
        if "energy_metrics" in data and data["energy_metrics"] is not None and data["energy_metrics"].get("enabled", False):
            total_energy = data["energy_metrics"].get("total_energy", 0)
            if total_energy > 0:
                energy_score = f"{total_energy:.5f}"

        return self(
            eval_name=result_key,
            full_model=full_model,
            org=org,
            model=model,
            results=results,
            precision=precision,
            revision=revision,
            still_on_hub=still_on_hub,
            architecture=architecture,
            energy_score=energy_score
        )

    def update_with_request_file(self, requests_path):
        """Finds the relevant request file for the current model and updates info with it"""
        request_file = get_request_file_for_model(requests_path, self.full_model, self.precision.value.name)

        try:
            with open(request_file, "r") as f:
                request = json.load(f)
            self.model_type = ModelType.from_str(request.get("model_type", ""))
            self.weight_type = WeightType[request.get("weight_type", "Original")]
            self.license = request.get("license", "?")
            self.likes = request.get("likes", 0)
            self.num_params = request.get("params", 0)
            self.date = request.get("submitted_time", "")
            self.architecture = request.get("architectures", "Unknown") # delete later
            self.status = request.get("status", "FAILED")
        except Exception:
            self.status = "FAILED"
            print(f'Could not find request file for {self.org}/{self.model} with "precision:{self.precision.value.name},model_type:{self.model_type}",license:{self.license},status:{self.status}')

    def to_dict(self):
        """Converts the Eval Result to a dict compatible with our dataframe display"""
        available_metrics = [v for v in self.results.values() if v is not None]
        average = sum(available_metrics) / len([v for v in available_metrics if v is not None]) if available_metrics else None

        data_dict = {
            "eval_name": self.eval_name,  # not a column, just a save name,
            AutoEvalColumn.precision.name: self.precision.value.name,
            AutoEvalColumn.model_type.name: self.model_type.value.name,
            AutoEvalColumn.model_type_symbol.name: self.model_type.value.symbol,
            AutoEvalColumn.weight_type.name: self.weight_type.value.name,
            AutoEvalColumn.architecture.name: self.architecture,
            AutoEvalColumn.model.name: make_clickable_model(self.full_model),
            AutoEvalColumn.revision.name: self.revision,
            AutoEvalColumn.average.name: average,
            AutoEvalColumn.license.name: self.license,
            AutoEvalColumn.likes.name: self.likes,
            AutoEvalColumn.params.name: self.num_params,
            AutoEvalColumn.still_on_hub.name: self.still_on_hub,
            AutoEvalColumn.energy_score.name: self.energy_score,
        }

        print(f"\nConverting to dict for model: {self.full_model}")
        for task in Tasks:
            result = self.results.get(task.value.benchmark)
            print(f"  Task: {task.value.col_name}, Benchmark: {task.value.benchmark}, Result: {result}")
            data_dict[task.value.col_name] = "NA" if result is None else round(result, 2)

        return data_dict


def get_request_file_for_model(requests_path, model_name, precision):
    """Selects the correct request file for a given model. Only keeps runs tagged as FINISHED"""
    request_files = os.path.join(
        requests_path,
        f"{model_name}_eval_request_*.json",
    )
    request_files = glob.glob(request_files)

    # Select correct request file (precision)
    request_file = ""
    request_files = sorted(request_files, reverse=True)
    for tmp_request_file in request_files:
        with open(tmp_request_file, "r") as f:
            req_content = json.load(f)
            if (
                    req_content["status"] in ["FINISHED"]
                    and req_content["precision"] == precision.split(".")[-1]
            ):
                request_file = tmp_request_file
    return request_file


def get_raw_eval_results(results_path: str, requests_path: str) -> list[EvalResult]:
    """From the path of the results folder root, extract all needed info for results"""
    model_result_filepaths = []

    for root, _, files in os.walk(results_path):
        # We should only have json files in model results
        if len(files) == 0 or any([not f.endswith(".json") for f in files]):
            continue

        # Sort the files by date
        try:
            files.sort(key=lambda x: x.removesuffix(".json").removeprefix("results_")[:-7])
        except dateutil.parser._parser.ParserError:
            files = [files[-1]]

        for file in files:
            model_result_filepaths.append(os.path.join(root, file))

    eval_results = {}
    for model_result_filepath in model_result_filepaths:
        try:
            # Creation of result
            print(f"\nProcessing file: {model_result_filepath}")
            eval_result = EvalResult.init_from_json_file(model_result_filepath)
            
            # Skip entries with Unknown/Unknown model name
            if eval_result.full_model == "Unknown/Unknown":
                print(f"Skipping invalid result file: {model_result_filepath}")
                continue
            
            print(f"Model: {eval_result.full_model}")
            print(f"Results before update_with_request_file:")
            for benchmark, value in eval_result.results.items():
                print(f"  {benchmark}: {value}")
                
            eval_result.update_with_request_file(requests_path)
            
            print(f"Results after update_with_request_file:")
            for benchmark, value in eval_result.results.items():
                print(f"  {benchmark}: {value}")

            # Store results of same eval together
            eval_name = eval_result.eval_name
            if eval_name in eval_results.keys():
                print(f"Updating existing results for {eval_name}")
                eval_results[eval_name].results.update({k: v for k, v in eval_result.results.items() if v is not None})
            else:
                print(f"Adding new results for {eval_name}")
                eval_results[eval_name] = eval_result
        except Exception as e:
            print(f"Error processing result file {model_result_filepath}: {str(e)}")
            continue

    results = []
    for v in eval_results.values():
        try:
            v.to_dict() # we test if the dict version is complete
            results.append(v)
        except KeyError:  # not all eval values present
            continue

    return results