Spaces:
Sleeping
Sleeping
import cv2 | |
import torch | |
from transformers import AutoImageProcessor, Swinv2ForImageClassification | |
from cam import ClassActivationMap | |
class GlaucomaModel(object): | |
def __init__(self, | |
cls_model_path="pamixsun/swinv2_tiny_for_glaucoma_classification", | |
device=torch.device('cpu')): | |
# where to load the model, gpu or cpu ? | |
self.device = device | |
# classification model for nails disease | |
self.cls_extractor = AutoImageProcessor.from_pretrained(cls_model_path) | |
self.cls_model = Swinv2ForImageClassification.from_pretrained(cls_model_path).to(device).eval() | |
# class activation map | |
self.cam = ClassActivationMap(self.cls_model, self.cls_extractor) | |
# classification id to label | |
self.id2label = self.cls_model.config.id2label | |
# number of classes for nails disease | |
self.num_diseases = len(self.id2label) | |
def glaucoma_pred(self, image): | |
""" | |
Args: | |
image: image array in RGB order. | |
""" | |
inputs = self.cls_extractor(images=image.copy(), return_tensors="pt") | |
with torch.no_grad(): | |
inputs.to(self.device) | |
outputs = self.cls_model(**inputs).logits | |
disease_idx = outputs.cpu()[0, :].detach().numpy().argmax() | |
return disease_idx | |
def process(self, image): | |
""" | |
Args: | |
image: image array in RGB order. | |
""" | |
image_shape = image.shape[:2] | |
disease_idx = self.glaucoma_pred(image) | |
cam = self.cam.get_cam(image, disease_idx) | |
cam = cv2.resize(cam, image_shape[::-1]) | |
return disease_idx, cam | |