Spaces:
Sleeping
Sleeping
import os | |
import subprocess | |
import spaces | |
import torch | |
import gradio as gr | |
from gradio_client.client import DEFAULT_TEMP_DIR | |
from playwright.sync_api import sync_playwright | |
from threading import Thread | |
from transformers import AutoProcessor, AutoModelForCausalLM, TextIteratorStreamer | |
from transformers.image_utils import to_numpy_array, PILImageResampling, ChannelDimension | |
from typing import List | |
from PIL import Image | |
from transformers.image_transforms import resize, to_channel_dimension_format | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
DEVICE = torch.device("cuda") | |
PROCESSOR = AutoProcessor.from_pretrained( | |
"HuggingFaceM4/VLM_WebSight_finetuned", | |
) | |
MODEL = AutoModelForCausalLM.from_pretrained( | |
"HuggingFaceM4/VLM_WebSight_finetuned", | |
trust_remote_code=True, | |
torch_dtype=torch.bfloat16, | |
).to(DEVICE) | |
if MODEL.config.use_resampler: | |
image_seq_len = MODEL.config.perceiver_config.resampler_n_latents | |
else: | |
image_seq_len = ( | |
MODEL.config.vision_config.image_size // MODEL.config.vision_config.patch_size | |
) ** 2 | |
BOS_TOKEN = PROCESSOR.tokenizer.bos_token | |
BAD_WORDS_IDS = PROCESSOR.tokenizer(["<image>", "<fake_token_around_image>"], add_special_tokens=False).input_ids | |
## Utils | |
def convert_to_rgb(image): | |
# `image.convert("RGB")` would only work for .jpg images, as it creates a wrong background | |
# for transparent images. The call to `alpha_composite` handles this case | |
if image.mode == "RGB": | |
return image | |
image_rgba = image.convert("RGBA") | |
background = Image.new("RGBA", image_rgba.size, (255, 255, 255)) | |
alpha_composite = Image.alpha_composite(background, image_rgba) | |
alpha_composite = alpha_composite.convert("RGB") | |
return alpha_composite | |
# The processor is the same as the Idefics processor except for the BICUBIC interpolation inside siglip, | |
# so this is a hack in order to redefine ONLY the transform method | |
def custom_transform(x): | |
x = convert_to_rgb(x) | |
x = to_numpy_array(x) | |
x = resize(x, (960, 960), resample=PILImageResampling.BILINEAR) | |
x = PROCESSOR.image_processor.rescale(x, scale=1 / 255) | |
x = PROCESSOR.image_processor.normalize( | |
x, | |
mean=PROCESSOR.image_processor.image_mean, | |
std=PROCESSOR.image_processor.image_std | |
) | |
x = to_channel_dimension_format(x, ChannelDimension.FIRST) | |
x = torch.tensor(x) | |
return x | |
## End of Utils | |
IMAGE_GALLERY_PATHS = [ | |
f"example_images/{ex_image}" | |
for ex_image in os.listdir(f"example_images") | |
] | |
def install_playwright(): | |
try: | |
subprocess.run(["playwright", "install"], check=True) | |
print("Playwright installation successful.") | |
except subprocess.CalledProcessError as e: | |
print(f"Error during Playwright installation: {e}") | |
install_playwright() | |
def add_file_gallery( | |
selected_state: gr.SelectData, | |
gallery_list: List[str] | |
): | |
return Image.open(gallery_list.root[selected_state.index].image.path) | |
def render_webpage( | |
html_css_code, | |
): | |
with sync_playwright() as p: | |
browser = p.chromium.launch(headless=True) | |
context = browser.new_context( | |
user_agent=( | |
"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/107.0.0.0" | |
" Safari/537.36" | |
) | |
) | |
page = context.new_page() | |
page.set_content(html_css_code) | |
page.wait_for_load_state("networkidle") | |
output_path_screenshot = f"{DEFAULT_TEMP_DIR}/{hash(html_css_code)}.png" | |
_ = page.screenshot(path=output_path_screenshot, full_page=True) | |
context.close() | |
browser.close() | |
return Image.open(output_path_screenshot) | |
def model_inference( | |
image, | |
): | |
if image is None: | |
raise ValueError("`image` is None. It should be a PIL image.") | |
inputs = PROCESSOR.tokenizer( | |
f"{BOS_TOKEN}<fake_token_around_image>{'<image>' * image_seq_len}<fake_token_around_image>", | |
return_tensors="pt", | |
add_special_tokens=False, | |
) | |
inputs["pixel_values"] = PROCESSOR.image_processor( | |
[image], | |
transform=custom_transform | |
) | |
inputs = { | |
k: v.to(DEVICE) | |
for k, v in inputs.items() | |
} | |
streamer = TextIteratorStreamer( | |
PROCESSOR.tokenizer, | |
skip_prompt=True, | |
) | |
generation_kwargs = dict( | |
inputs, | |
bad_words_ids=BAD_WORDS_IDS, | |
max_length=4096, | |
streamer=streamer, | |
) | |
# Regular generation version | |
# generation_kwargs.pop("streamer") | |
# generated_ids = MODEL.generate(**generation_kwargs) | |
# generated_text = PROCESSOR.batch_decode( | |
# generated_ids, | |
# skip_special_tokens=True | |
# )[0] | |
# rendered_page = render_webpage(generated_text) | |
# return generated_text, rendered_page | |
# Token streaming version | |
thread = Thread( | |
target=MODEL.generate, | |
kwargs=generation_kwargs, | |
) | |
thread.start() | |
generated_text = "" | |
for new_text in streamer: | |
if "</s>" in new_text: | |
new_text = new_text.replace("</s>", "") | |
rendered_image = render_webpage(generated_text) | |
else: | |
rendered_image = None | |
generated_text += new_text | |
yield generated_text, rendered_image | |
generated_html = gr.Code( | |
label="Extracted HTML", | |
elem_id="generated_html", | |
) | |
rendered_html = gr.Image( | |
label="Rendered HTML", | |
show_download_button=False, | |
show_share_button=False, | |
) | |
# rendered_html = gr.HTML( | |
# label="Rendered HTML" | |
# ) | |
css = """ | |
.gradio-container{max-width: 1000px!important} | |
h1{display: flex;align-items: center;justify-content: center;gap: .25em} | |
*{transition: width 0.5s ease, flex-grow 0.5s ease} | |
""" | |
with gr.Blocks(title="Screenshot to HTML", theme=gr.themes.Base(), css=css) as demo: | |
gr.Markdown( | |
"Since the model used for this demo *does not generate images*, it is more effective to input standalone website elements or sites with minimal image content." | |
) | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=4, min_width=250) as upload_area: | |
imagebox = gr.Image( | |
type="pil", | |
label="Screenshot to extract", | |
visible=True, | |
sources=["upload", "clipboard"], | |
) | |
with gr.Group(): | |
with gr.Row(): | |
submit_btn = gr.Button( | |
value="▶️ Submit", visible=True, min_width=120 | |
) | |
clear_btn = gr.ClearButton( | |
[imagebox, generated_html, rendered_html], value="🧹 Clear", min_width=120 | |
) | |
regenerate_btn = gr.Button( | |
value="🔄 Regenerate", visible=True, min_width=120 | |
) | |
with gr.Column(scale=4): | |
rendered_html.render() | |
with gr.Row(): | |
generated_html.render() | |
with gr.Row(): | |
template_gallery = gr.Gallery( | |
value=IMAGE_GALLERY_PATHS, | |
label="Templates Gallery", | |
allow_preview=False, | |
columns=5, | |
elem_id="gallery", | |
show_share_button=False, | |
height=400, | |
) | |
gr.on( | |
triggers=[ | |
imagebox.upload, | |
submit_btn.click, | |
regenerate_btn.click, | |
], | |
fn=model_inference, | |
inputs=[imagebox], | |
outputs=[generated_html, rendered_html], | |
) | |
regenerate_btn.click( | |
fn=model_inference, | |
inputs=[imagebox], | |
outputs=[generated_html, rendered_html], | |
) | |
template_gallery.select( | |
fn=add_file_gallery, | |
inputs=[template_gallery], | |
outputs=[imagebox], | |
).success( | |
fn=model_inference, | |
inputs=[imagebox], | |
outputs=[generated_html, rendered_html], | |
) | |
demo.load() | |
demo.queue(max_size=40, api_open=False) | |
demo.launch(max_threads=400) | |